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Abstract

This paper documents the asset pricing implications of the data release process
of National Income and Product Accounts (NIPA) consumption expenditure. We
find that early consumption data releases are more suitable for asset pricing than
final revised releases. This is due to first revisions capturing genuinely novel
information, whereas the remaining revisions serve to mitigate measurement
error and functions as a filtering process which distorts return-consumption
covariances. We then consider a new consumption-based model, the Revised
CCAPM, which incorporates this release process using NIPA vintage data. It
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the 25 size-value portfolios when featuring the first data release and its state-
dependent uncertainty coming from first data revisions. We show that first
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Keywords: Asset pricing, data revisions, vintage data, consumption-based capital

asset pricing model, NIPA personal consumption expenditures.

JEL Classification: C82, G11, G12, E21.

This version: January 3, 2020.
*We are grateful to Tim Alexander Kroencke, Michael Halling, Andreas Schrimpf, Michal Dzieliński
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I. Introduction

Despite the structural foundation and intuitive appeal of the consumption-based capi-

tal asset pricing model (CCAPM), its empirical support is generally weak. In response,

modifications to the consumption data input (e.g., Da and Yun (2010), Julliard and

Parker (2005), Jagannathan and Wang (2007), Savov (2011), and Kroencke (2017)) or

the inclusion of additional risk factors (e.g., Yogo (2006), Da (2009), and Boguth and

Kuehn (2013)) have been proposed in order to improve the empirical asset pricing

ability of the consumption-based framework. Both approaches share the commonality

of using fully revised consumption data as part of their input. However, the Bureau of

Economic Analysis (BEA) updates their estimates of consumption, as reported in the

National Income and Product Accounts (NIPA) tables, frequently and the resulting

revisions are non-negligible. To appreciate the magnitude of these revisions, we depict

in Figure 1 nondurable real consumption growth for the time points 1970:Q1, 1985:Q1,

and 2010:Q1 as seen through all vintages until 2018:Q2.

Figure 1: Consumption growth through vintages

This figure depicts the annualized value of aggregate consumption
growth in Q1 of 1970 (1985) {2010} as reported in vintages through
1970 (1985) {2010} until Q2 of 2018 by the orange (blue) {black} solid
line. Grey shaded areas indicate NBER recessions.

Revisions are large relative to the size of the first or final release and consumption

data undergoes a series of revisions that continue even decades after the initial

release. Moreover, first and final releases often tell a very different story about the

economic state faced by the investor at time point t such that inference about the

state of the economy may differ a great deal.
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In this paper we document the implications of the consumption data release process for

asset pricing. As argued by Aruoba (2008), Croushore (2011), and Gilbert (2011), users

of this data understand the release process and recognize the inherent uncertainty

surrounding the initial announcement. The relevance of this in an asset pricing

context depends on the informational content of revisions and whether investors care

about revisions enough to influence their portfolio allocation decisions and, as a result,

asset prices today. To investigate this, we first propose a new consumption-based

asset pricing model, referred to as Revised CCAPM, which incorporates the data

release process using vintage NIPA data and allows us to test relevant empirical

hypotheses. It features two components. First, the model uses the initial NIPA release

of consumption growth as pricing factor instead of the fully revised final NIPA release.

BEA (2019) explains that revisions serve to reduce measurement error of early data

releases. However, Kroencke (2017) documents that final NIPA consumption is overly

smooth, arguably due to mitigating measurement errors, and that unfiltering results

in improved pricing performance of the CCAPM. As such, for the specific purpose of

asset pricing measurement errors are less an issue relative to smoothing, and our

hypothesis is that the use of first releases largely avoids the filtering process of NIPA

and leads to better asset pricing performance.1

While the representative agent knows with certainty the amount of consumption she

had in the current period, future consumption remains unknown to her, such that

consumption growth is subject to uncertainty (Boguth and Kuehn, 2013). As such,

the investor is likely not interested in future revisions to learn about past consump-

tion. Rather, she might be concerned about revisions to consumption growth if they

represent uncertainty today about immediate consumption growth. To capture this,

the Revised CCAPM also features the interaction between the initial release and the

absolute value of revisions, the latter capturing uncertainty surrounding consumption

growth. This arguably better reflects the way investors interpret consumption data,

see also Croushore (2011), and our empirical analyses strongly support this. The

Revised CCAPM is able to explain a striking 75% (adjusted R2 of 74%) of the cross-

sectional variation in average returns of the conventional 25 size and book-to-market

1A related argument is that final releases include so-called annual and benchmark revisions
that involve changes in methodology, e.g. seasonal adjustments or base years. These have no new
fundamental information of true consumption growth, yet incorporate information not available to
individuals at the relevant time, even several decades after. This in turn generates measurement
errors in the final releases.
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sorted portfolios. This high level of explanatory power is on par with the Fama and

French (1993) three-factor model, which is directly built to explain the size and value

anomaly, and it surpasses popular consumption-based benchmark models by a large

margin.2 These findings are robust to a variety of misspecification and placebo tests

and hold across a large set of test assets, addressing the critique in Lewellen, Nagel,

and Shanken (2010). The remainder of the paper serves to understand why asset

pricing with revisions, our Revised CCAPM, is this successful.

We find that the pricing ability of the model is highest when we use initial release

consumption data together with the uncertainty coming from the first revision. We

also find that pricing performance decreases monotonically in the horizon over which

revisions are measured. The most likely explanation for this stems from the infor-

mational content in revisions. Specifically, using the framework of Mankiw, Runkle,

and Shapiro (1984) and Mankiw and Shapiro (1986) together with an analysis of

revision predictability, we demonstrate that revisions can either be a source of novel

information or an attempt to smooth out measurement error. We provide compelling

evidence in favor of the first revisions containing genuine news and contributes with

novel information while the remaining of the revisions are predictable innovations

that serve primarily as devices to mitigate measurement error, consistent with the

methodology described in BEA (2019). This view of longer horizon revisions as a

filtering process of data is in line with the findings in Kroencke (2017), but it con-

tradicts the typical presumption in macroeconomic-based asset pricing studies that

final releases best match the information set of the representative agent (Lettau and

Ludvigson, 2010). Additionally, the variances of the early releases are significantly

larger than that of the final release, supporting the idea of later revisions having a

filtering function. The implication is that early consumption data releases are more

suitable for asset pricing than final releases. Supporting this, the consumption growth

risk premia for final and first release risk without the presence of revision uncertainty

are 1.29% and 2.95%, respectively. That is, the first release more than doubles the

risk premia. Simply replacing the final release with the first release, excluding the

revision uncertainty component, leads to an improvement in adjusted cross-sectional

R2 from 9% to 19%, further suppoting this hypothesis. As such, this also provides an

2Our benchmark models are the Ultimate CCAPM of Julliard and Parker (2005), a quarterly version
of the Q4-Q4 CCAPM of Jagannathan and Wang (2007), and the Cay CCAPM of Lettau and Ludvigson
(2001).
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explanation as to why other consumption measures like garbage (Savov, 2011) and

electricity (Da and Yun, 2010) yield better asset pricing results, since they are less

subject to revisions and the associated mitigation of measurement errors.

We find that the first release enters the stochastic discount factor (SDF) positively and

the revision uncertainty component negatively, both with t-statistics exceeding the

multiple testing threshold proposed by Harvey, Liu, and Zhu (2016). The implication

being that investors interpret increasing first release consumption growth as high

marginal utility states and require a premium for holding assets with positively

covarying returns. This reflects the conventional logic of the consumption-based asset

pricing framework. On the other hand, they dislike positive covariances with the

revision uncertainty component. To understand why this is the case, we investigate

to what extend revisions represent either of three plausible candidates; consumption

growth shocks, risk, or ambiguity.

To partly answer this question, we derive an alternative CCAPM in which revisions

enter the model in levels. We simply decompose consumption growth data into the

first release and subsequent revisions. Since this model is essentially a decomposition

of the Standard CCAPM, revisions should enter the SDF with a positive sign for

them to be consistent with consumption growth shocks. However, we find that the

opposite is true, since investors associate large positive revisions with low marginal

utility states and, as a result, reject the growth shocks hypothesis. We then consider

a model where the additional risk factor is the absolute value of revisions. The

implication of this model is that since investors do not necessarily care about the

direction of revisions but they care about its magnitude, revisions are capturing some

sort of risk or ambiguity. Although the two terms are often used interchangeably

with ambiguity typically mentioned as uncertainty, the distinction between risk and

ambiguity is both behaviorally, empirically, and theoretically important. Risk refers

to situations where the distribution of random outcomes, e.g. consumption growth,

is known to the decision maker, while uncertainty or ambiguity (sometimes called

Knightian uncertainty (Knight, 1921)) refers to the situation where the decision

maker is uncertain about the distribution of these outcomes. The pricing performance

of this model is solid, but weaker than both the model that includes revisions in levels

and our proposed Revised CCAPM. Yet, the price is negative and weakly significant.

A natural question then arises. How come the Revised CCAPM provides so large
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improvements by interacting absolute revisions with the first release, when using

the absolute revision alone does not? In a nutshell, why does the interaction term

matter? To guide our answer, we examine the relationship between absolute revisions

and empirical proxies classified as either risk or ambiguity.3

Using a regression-based analysis, we find a strong positive relation between absolute

revisions and ambiguity proxies identified in the literature. On the other hand, we

find that revisions are unrelated to risk proxies. We conclude that revision uncertainty

is strongly related to the ambiguity surrounding immediate consumption growth and

may be interpreted as such. Aversion to ambiguity has been documented in the

literature, dating back to e.g. Keynes (1937) and Ellsberg (1961) and recently in

Dew-Becker et al. (2019). Moreover, recent psychological experiments show that

ambiguity aversion exists even after having seen a particular data sample (Smithson,

Priest, Shou, and Newell, 2019). In our context, this means that investors might

be uncertain about the underlying distribution of consumption even if they have

observed all past releases.

The strong pricing performance of our Revised CCAPM can be understood in this

context. Simply interacting the consumption growth signal, captured by the first

release, with absolute revisions allows for a state-dependent interpretation of revision

uncertainty (or ambiguity). A recent contribution by Brenner and Izhakian (2018)

finds evidence of state-dependent ambiguity attitudes in relation to stock market

returns.4 The logic is that with a high probability of a favourable outcome, ambiguity

aversion is high as investors prefer the certainty around the outcome. On the other

hand, with a high probability of an unfavourable outcome, ambiguity aversion is

low as investors like that this is in fact uncertain. Adopting the logic of Brenner

and Izhakian (2018), our asset pricing results show that increasing ambiguity in

3We proxy risk as conditional or realized volatility of consumption growth as in e.g. Boguth
and Kuehn (2013) and Dew-Becker, Giglio, and Kelly (2019). As measure of ambiguity we use the
cross-sectional dispersion in the Survey of Professional Forecasters’ (SPF) nowcast on consumption
growth, adopting Anderson, Ghysels, and Juergens (2009) and Drechsler (2013), along with several
non-consumption related measures such as implied stock market volatility (Berger, Dew-Becker, and
Giglio, 2019b) and economic policy uncertainty (Baker, Bloom, and Davis, 2016).

4There is also strong evidence from the behavioral and experimental economics literature that
attitudes towards ambiguity are state dependent, with ambiguity aversion for positive states (high
probability of gain) and ambiguity seeking for negative states (high probability of a loss), see, e.g.,
Mangelsdorff and Weber (1994); Di Mauro and Maffioletti (1996); Du and Budescu (2005); Chakravarty
and Roy (2009); Kothiyal (2012).
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good states of high consumption growth (possibly relative to a time-varying or fixed

reference point) is disliked, yet increasing ambiguity in bad states is preferred by

the investor. As such, the investor requires a premium for holding assets that have

returns covarying negatively with the revision uncertainty component. We estimate

the total premium on consumption growth to 5.73% per year, of which 5.41% attributes

to the state-dependent ambiguity. This is significantly larger than the risk premia

obtained using either final or first release risk in isolation.

Our paper contributes to three broad strands of the literature. First, there is an ex-

tensive literature that seeks to improve the asset pricing abilities of the consumption-

based framework. Those improvements can broadly be categorized into a group that

addresses the data input, e.g., using cumulative growth rates (Julliard and Parker,

2005), Q4-Q4 growth rates (Jagannathan and Wang, 2007), garbage (Savov, 2011),

unfiltered consumption (Kroencke, 2017), or fuel (Dittmar, Schlag, and Thimme,

2018), and a group that proposes additional risk factors, e.g., durable consumption

(Yogo, 2006), cash flow risk (Da, 2009), or consumption volatility (Boguth and Kuehn,

2013). Our Revised CCAPM contributes to both groups. It contributes to the first by

capturing the data release process of its input, showing that early data releases are

more suitable for asset pricing than final releases, and demonstrates how to use and

understand revisions. It contributes to the second group by incorporating revision

uncertainty, i.e. consumption growth ambiguity, as an additional risk factor. As a

result, our paper’s second main contribution can be linked to the growing literature

that examines the asset pricing implications of investor attitudes to ambiguity or

uncertainty in general. Ju and Miao (2012) develop a structural consumption-based

asset pricing model that resolves many of the empirical puzzles faced in the Standard

CCAPM, and Thimme and Völkert (2015) and Lee, Min, and Kim (2019) find support-

ing evidence of the relevance of ambiguity risk from the cross-section of stock returns.

Bali, Brown, and Tang (2017) document that economic uncertainty in general is a

priced risk factor, carrying a negative risk premium. Our findings support the idea

of ambiguity or uncertainty being priced in the financial markets. This is, however,

due to state-dependent ambiguity attitudes as in Brenner and Izhakian (2018). Our

findings also suggest that revisions are a novel and natural proxy for ambiguity.

Finally, our paper contributes to the large and active literature on vintage data and

revisions (Mankiw et al., 1984; Mankiw and Shapiro, 1986; Aruoba, 2008; Croushore,

2011). Apart from understanding their informational content, this literature mainly
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focuses on the implications in a forecasting context, e.g., Ghysels, Horan, and Moench

(2017) and Clements (2019), or for policy rules (Orphanides, 2001). To our knowledge,

Christoffersen, Ghysels, and Swanson (2002) is a lonely contribution that addresses

the data release process in a classical cross-sectional asset pricing context. They

focus, however, on the publication lag and not on consumption nor its revisions or first

release. Ferson and Harvey (1992) consider the impact of seasonality adjustments

in an consumption-based framework, broadly related to the present paper, and Bell

and Wilcox (1993) examine the impact of measurement error in retail surveys on

economic implications in general. Gilbert (2011) documents the relevance of revision

announcements on S&P 500 Index daily returns and find that revisions matter with

a positive relationship in good states and vice versa. None has, to our knowledge,

analysed the implications of data revisions nor their economic interpretation for asset

pricing, which is our main contribution.

The rest of the paper is laid out as follows. Section II introduces the theoretical

foundation for asset pricing and motivates the consumption-based framework. It

documents the relevance of consumption growth revisions and presents our main

model, the Revised CCAPM, that features the data release process. Section III shows

baseline results for the asset pricing performance of the Revised CCAPM and a

number of misspecification, robustness, and placebo tests, as well as a discussion of

consumption growth risk premia. We analyze the informational content of revisions in

relation to the news versus noise hypothesis and their economic interpretation as to

whether they constitute consumption growth shocks, risk, or ambiguity. In response,

we address the implication for interpretation of the pricing results for the Revised

CCAPM in this context. In Section IV, we explicitly address our choice of tests assets

and conduct a thorough robustness check on both the pricing performance of the

Revised CCAPM as well as associated economic interpretation. Section V concludes

and discuss implications for past and future research.

II. Asset pricing with data revisions

In this section, we briefly review the theoretical foundation for asset pricing and

the consumption-based framework. This facilitates the presentation of our Revised

CCAPM that conducts asset pricing with data revisions, motivated from an analysis

of their empirical characteristics.
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A. Asset pricing and the consumption-based framework

Absence of arbitrage ensures the existence of a stochastic discount factor (SDF)

denoted by mt+1 that prices all real asset returns according to

E
[
mt+1r i,t+1|Ft

]= 0, (1)

where r i,t+1 is the real excess return of asset i relative to the risk-free rate and Ft is

the information set pertaining to time period t. The SDF captures states of marginal

utility growth and prices stocks according to their returns within those states. Under

a linear factor model framework,assuming without loss of generality that factors are

de-meaned, mt+1 is linear in risk factors f t+1

mt+1 = 1−λ′ f t+1, (2)

where λ are SDF loadings. These loadings determine how marginal utility growth is

affected through the dynamics of f t+1 and, as such, how a factor influences the pricing

of a given stock. Together, (1)–(2) imply expected excess returns given by

E[r i,t+1]=λ′cov[ f t+1, r i,t+1], (3)

which in turn yields the unconditional beta representation of the form

E[r i,t+1]= γ′β, (4)

where γ are the factor risk premia and β the corresponding factor exposures defined

as the regression coefficients from a multiple regression of returns on the factors. As

such, the risk premia can be inferred directly from the SDF loadings in (1) or (3) via

γ=Σ fλ, where Σ f is the covariance matrix of the risk factors.

Regardless of choice of utility function, the standard log-linearized CCAPM (Lucas,

1978; Breeden, 1979) posits that

mt+1 ≈ 1−λct+1, (5)

where ct+1 is the logarithmic growth rate of perishable consumption. In other words,

aggregate marginal utility growth of consumption, u′(Ct+1)/u(Ct), C denoting aggre-
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gate consumption, is determined by a linear function in consumption growth. Due to

(4) the implied beta representation is, ignoring the approximation in (5),

E[r i,t+1]= γcβc
i , (6)

where

βc
i =

cov[r i,t+1, ct+1]
var[ct+1]

. (7)

The theoretical foundation of the standard CCAPM imposes that λc,γc > 0, reflecting

the intuition that assets with increasing returns in good states characterized by high

consumption growth and low marginal utility growth are considered risky, causing

the investor to command a compensation for holding the assets.

Application of this Standard CCAPM requires data on consumption growth ct+1.

The common approach is to gather most recent data as reported in the NIPA tables

maintained by BEA. Most macroeconomic variables, including consumption growth,

are, however, substantially revised by statistical agencies in the periods following

their initial releases, cf. Figure 1. As argued by e.g. Aruoba (2008), Croushore (2011),

and Gilbert (2011), users of this data understand the release process and the inherent

uncertainty surrounding the initial announcement. The relevance of this in an

asset pricing context depends on the informational content of revisions and whether

investors care about revisions enough to influence their portfolio allocation decisions

(consumption versus investment in the context of CCAPM) and, as a consequence,

asset prices today. We will investigate this below, starting with summary of the

characteristic of consumption growth revisions.

B. Characterizing consumption revisions

An accounting-like identity dictates that a given data release pertaining to time

period t and released k periods later can be decomposed into the first release ct|t and

subsequent revisions νt|t+k as

ct|t+k = ct|t +νt|t+k, (8)
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for k = 0,1, . . . ,T − t and t = 1, . . . ,T.5 If k = 0 we obtain the initial announcement and

νt|t+k = 0. If k = T we obtain the most revised, up-to-date release of ct of consumption

growth pertaining to time period t (i.e. the last point of the three lines in Figure 1).

In the literature, applications of the Standard CCAPM framework have exclusively

relied on ct|T as consumption data.6 Statistical agencies make methodological changes,

changes in base year or seasonal corrections. These typically occur at about every

five years for NIPA variables on top of annual revisions (Aruoba, 2008; Croushore,

2011; Gilbert, 2011).7 We refer to this type of revision as benchmark revisions. The

informational content of such revisions may not be of great interest compared to

revisions that provide genuine news about consumption growth. For this reason, we

consider a wide range of k to examine whether and how investors interpret specific

types of revisions both in this section and in the asset pricing section below.

We obtain quarterly vintage data on real nondurables consumption expenditure

growth, henceforth referred to as consumption growth, as reported in the National

Income and Production Accounts (NIPA) over the period 1965:Q1 to 2018:Q2 from the

Archival Federal Reserve Economic Database (ALFRED) at the Federal Reserve Bank

of St. Louis.8 We then define the k-ahead revision as

νt|t+k = ct|t+k − ct|t. (9)

Table 1 reports several statistics associated with the vintage data of consumption

growth across the full period. We also report results conditional on being in an

NBER expansion or recession. Panel A, which looks at the full sample, indicates that

the mean of revisions at all horizons are positive and economically large, but only

statistically different from zero for k = 4. Conditioning on the business cycle, revisions

during expansions are large, positive, and statistically significant at conventional

5A given data release can be further decomposed into a component that captures the publication
lag, typically by one or two months. This is particularly relevant in a forecast context, as documented
in Ghysels et al. (2017).

6As an exception and using the variables in Chen, Roll, and Ross (1986), which does not include
consumption growth Christoffersen et al. (2002) use the lagged first data release and not the final data
release in an application to the 25 size-value portfolios of Fama and French (1993).

7For further details, see http://www.bea.gov/help/faq?faq_id=126.
8To avoid continamination from revised data, we do not adjust for population growth since it is

substantially revised but only available in vintage data form from 1999 and onwards. Moreover, we
focus on nondurable goods only, as in e.g. Julliard and Parker (2005). This follows recommendations by
Wilcox (1992) who advocate treating nondurable goods separately from services in empirical studies.
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levels for all k. It is interesting to note that the most significant results are obtained

for revisions announced closely to the initial release. During recessions, revisions

are large and negative, but only significant for k = 1. This suggests revisions to

nondurable consumption are biased, in the sense of being non-zero, and follow the

economic cycle. In fact, the initial release is weakly positive in recessions, with

revisions causing the final series to being substantially negative on average. In

summary, the initial announcements appear biased in a systematic manner. The

third column, which shows the noise to signal ratio, var[νt|t+k]/var[ct|T], are all

above 0.4, documenting substantial variance in revisions relative to the final release.

Interestingly, the initial announcement has a higher variance than the final release

with revisions reducing the variance quite substantially over time. This has a strong

implication for the informational content of revisions and their pricing ability, which

we will examine further below.

C. The Revised consumption-based CAPM

We have now established that revisions are both large in magnitude and exhibit

substantial variance relative to the size of initial (or final) release data. To see the

implication for the consumption process in an asset pricing context, we will return

to the fundamental linear SDF pricing expression in (2). We modify the Standard

CCAPM model in (5) to the following form

mt+1 = 1−λfirstct+1|t+1 −λrev,kct+1|t+1 · |νt+1|t+1+k|, (10)

where we denote the terms associated with revision by k to indicate their dependence

on choice of revision horizon. We refer to ct+1|t+1 as the first release component (FRC)

and ct+1|t+1 · |νt+1|t+1+k| as the revision uncertainty component (RUC), denoting it by

ϕk
t+1 for expositional clarity.9 Inserting into the fundamental pricing equation in (1)

and taking unconditional expectations implies the following expression for expected

9We note that future revisions and the first release are not available at time t to the investor. This
is of no concern in this asset pricing context. The reason is that as long as investors know revisions will
happen, they will position themselves in the assets in the market today according to a preference of
hedging or taking the associated RUC risk. Moreover, this is fully consistent with the conventional use
of final, revised data in the Standard CCAPM and other consumption-based models, e.g., the Ultimate
(long-run) CCAPM of Julliard and Parker (2005) who uses future cumulative consumption growth, or
Eiling, De Jong, Laeven, and Sperna Weiland (2019) who uses future labour income as risk factor.
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returns

E[r i,t+1]=λfirstcov[ct+1|t+1, r i,t+1]+λrev,kcov[ϕk
t+1, r i,t+1]. (11)

The model contains two risk components, where the first depends on the covariance

between first release consumption growth and returns and the second depends on

the covariance between the RUC and returns. Note that if λrev,k = 0 (or alternatively

setting k = 0), the model collapses to the Standard CCAPM using the first data release

as risk factor instead of the final release which has been used so far in the literature.

We will refer to this model as First CCAPM. Comparing this models’ pricing abilities

to that of the Standard CCAPM enable inference on the appropriates of using first

versus final data releases. The presumption in the financial literature is that final

releases best match the information of the representative agent and, as such, is the

appropriate choice of measure to use, see e.g. Lettau and Ludvigson (2010). However,

as argued by Kroencke (2017), in constructing this final release, NIPA statisticians

aim at reducing measurement errors through a filtering process. If revisions represent

this process by NIPA statisticians, they will be hurtful to the asset pricing ability

of the consumption growth risk factor by removing possibly useful elements of the

consumption signal without a need (in an asset pricing context) as measurement

errors has no influence on return-consumption covariances, see Kroencke (2017). We

investigate both empirically below. Moreover, as shown above, consumption growth

is revised several decades after its first release due to benchmark revisions which

adjust methodology such as seasonal corrections or base years. These adjustments

have no new fundamental information of true consumption growth, yet incorporate

information not available to individuals at the relevant time. This accumulates

generates measurement errors in the final releases and a misrepresentation of the

actual information set of the representative agent at time t.

Allowing for λrev,k 6= 0, revisions may enter the SDF through the interaction of its

absolute value and the first release. We will refer to this model as Revised CCAPM.

We use the absolute value of revisions to capture the fact that revisions represent

uncertainty and not contemporaneous consumption growth shocks, thus what matters

is the size of revisions and not their sign. This distinction is something we document

and discuss in great detail in Section E, showing that revision uncertainty from

the BEA is indeed strongly related to the general uncertainty about consumption
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growth.10 As such, this model maintains that investors care only about consumption

growth for making portfolio decisions, as in the Standard CCAPM framework, yet

incorporate the uncertainty and associated impact on marginal utility coming from

the fact that immediate consumption growth is uncertain to the investor.

Several additional interesting hypotheses can be entertained. First, we are interested

in whether consumption growth prices assets in the sense that the factor enters

the SDF. This amounts to testing H0 : λfirst = 0, with the related hypothesis to test

whether, from an asset pricing perspective, first release consumption data leads to a

better measure of consumption than final release. Secondly, we want to test whether

the uncertainty coming from revisions matter, i.e. whether the RUC belongs to the

SDF. This amounts to testing H0 :λrev,k = 0. Third, the sign of the SDF loadings are

interesting since they inform about how the FRC and RUC enters the SDF, i.e. how

they influence marginal utility growth.

It is also of interest to examine the risk premia investors’ require in compensation for

those two types of risk as captured by γfirst and γrev,k in the following implied beta

representation

E[r i,t+1]=βfirst
i γfirst +βrev,k

i γrev,k. (12)

We expect the risk premium on the first consumption growth release to be positive and

in line with the general notion of immediate consumption growth risk in the Standard

CCAPM. The second risk premium explicitly captures the fact that the interpretation

of the first consumption growth release is dependent on its uncertainty. As such, this

interaction captures the risk premia arising from uncertainty about immmediate

consumption grwoth. For now, we will be agnostic about the sign of the risk premia of

this second term and defer our discussion of a plausible explanation for the sign of the

risk premia to Section E. In that way we follow the principle ideas of the approach in

Dew-Becker et al. (2019) and extract market participants’ evaluation of a given risk

source, here the RUC, from their portfolio decisions. The total consumption growth

risk premium is given by the sum of these two risk premia, adjusted for the sign

according to the risk exposure.

10We show results and discuss the implication of revisions entering in levels as an additional risk
factor in Section E.
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Interestingly, this model is also implied by a conditional one-factor model with the

first release risk as the only risk factor and |νt|t+k| the conditioning information in a

linear specification of the dynamics of β̃first
i,t given by

β̃first
i,t =βfirst

i +βrev,k
i |νt|t+k|. (13)

Linear specifications of this kind have been used by, among others, Lettau and

Ludvigson (2001) in a conditional CCAPM using the consumption-wealth variable as

conditioning information, or by Cochrane (1996) in an investment-based asset pricing

model. In our case, the uncertainty of the first release either dampens or propagates

the risk associated with the consumption growth shock captured by the first release,

depending on the sign of βrev,k
i . As such, the compensation for immediate consumption

growth risk is dependent on the precision or uncertainty surrounding the signal on

consumption.

III. Empirical results

In this section, we first introduce the econometric methodology for our pricing ap-

plications. We then present baseline results for the 25 size-value portfolios of Fama

and French (1993) and an analysis of the main drivers of the empirical findings. We

discuss the information content of revisions and examine whether revisions relate to

consumption growth shocks, risk or ambiguity.

A. Econometric methodology

We follow the literature and estimate our asset pricing models using the conventional

Fama and MacBeth (1973) two-pass methodology as in, e.g., Eiling (2013). In the first

stage, we estimate unconditional risk exposures for each asset, i. This can either be

done by a multivariate time series regression including simultaneously all risk factors

as covariates or one-by-one for each factor, effectively computing single regression

betas. If the risk factors are completely orthogonal, the outcome of the two approaches

would be identical. As noted by Jagannathan and Wang (1998), Kan, Robotti, and

Shanken (2013) and Feng, Giglio, and Xiu (2019) this distinction is important since

determining whether a particular factor has additional pricing power can only be

answered through the significance of SDF loadings arising from univariate beta

regressions. In other words, if the question we are asking is whether or not a given
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factor belongs in the SDF we need to use univariate betas, as delineated by (3). On

the other hand, if our interest is on understanding the risk premium of a given factor,

we need to use multivariate betas, as delineated by (4).11 Thus, to test the model,

make inference on whether RUC risk belongs in the SDF and understand implications

for marginal utility growth we use univariate betas on the first stage. Univariate

betas are also the appropriate tool to use when testing model misspecification by

augmenting the second-stage cross-sectional regression with firm characteristics. We

then use multivariate betas to understand the pricing of RUC risk and investors’

required premium for taking this risk. It is important to note that pricing errors,

hence cross-sectional R2 and model-implied returns, are unaffected by whether we

use univariate or multivariate betas on the first stage.

On this basis, we compute conventional Fama-Macbeth t-statistics on parameters on

the second stage regression. However, Kan et al. (2013) document that substantial

standard error adjustments are needed when using non-traded factors due to errors-

in-variables coming from the first-stage estimation of SDF loadings. Accordingly, we

compute GMM standard errors that are robust to errors-in-variables as well as to

heteroskedasticity and autocorrelation by Newey and West (1987) with a Bartlett

kernel and data-driven lag selection based on Andrews (1991) as in, e.g., Dittmar

et al. (2018).

B. Benchmark models

To compare the performance of our Revised CCAPM to existing approaches, we

implement three widely acknowledged modifications to the Standard CCAPM that

have shown strong empirical performance. The first model is the Ultimate (or long-

run) CCAPM from Julliard and Parker (2005), which is based on the idea that an

asset’s covariance with ultimate consumption risk, as measured by the three-year

future consumption growth rate, is a better measure of the riskiness of that asset. As

noted by Julliard and Parker (2005) the performance of the ultimate CCAPM as a

linear one-factor model approaches that of the Fama and French (1993) three-factor

model and the Lettau and Ludvigson (2001) three-factor model. Moreover, this model

is not rejected when explaining the value premium (Golubov and Konstantinidi,

11As noted by Feng et al. (2019) the distinction is important since a factor can command a nonzero
risk premium even if it does not belong to the SDF just because it is correlated with one of the true
factors that belong in the SDF.
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2019). The second benchmark model is the Q4-Q4 CCAPM from Jagannathan and

Wang (2007) that uses the fourth quarter year-over-year consumption growth as risk

factor.12 This model is also related to Da and Yun (2010), Da, Yang, and Yun (2015)

and Møller and Rangvid (2015). The core tenet of these models is that investors

are more likely to review their consumption-investment decision during the fourth

quarter of the year. Jagannathan and Wang (2007) show that the Q4-Q4 model

performs almost as well as the Fama and French (1993) three-factor model. The third

benchmark model is the Cay CCAPM used in Lettau and Ludvigson (2001), which is

a conditional specification of the original CCAPM where conditionality is modelled by

the log consumption–aggregate wealth ratio.13 We implement the models using final,

revised data as in the original papers.

C. Asset pricing results for size and value portfolios

We follow custom by initially selecting the 25 Fama and French (1993) size and book-to-

market sorted portfolios as test assets. Partly because they constitute an economically

interesting cross-section, and partly because they form a common ground for the

asset pricing models considered in the present paper and other studies. As such, for

this present application, we also implement the three-factor Fama and French (1993)

model which is explicitly designed to capture the return patterns observed in these

25 size-value test assets.

Table 2 reports the estimates of λ and associated t-statistics, adjusted cross-sectional

R2, and mean absolute pricing error (MAPE). We confirm the poor performance of

the Standard CCAPM using final, revised data. The SDF loading is insignificant

and the R2 is 9%. A 45-degree pricing error plot in Figure A.1 illustrates that the

model is incapable of capturing the large cross-sectional variation in realized average

excess return by cross-sectional variations in beta. Employing the First CCAPM, one

obtains a notable increase in pricing ability relative to the Standard CCAPM with an

R2 of almost 19% and more than double the size of the SDF loading. It is borderline

insignificant, nevertheless. While the performance is not overwhelming in absolute

terms, more than doubling the R2 simply by replacing final, revised data with the

12Similarly to Boguth and Kuehn (2013), we use fourth quarter year-over-year consumption growth
as risk factor for the entire year, until new data on fourth quarter is available.

13Data on the cay variable is from Martin Lettau’s personal website, https://sites.google.com/
view/martinlettau/data.
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first release suggests that first release data is a better measure of the consumption

growth that investors actually care about. That is, if consumption risk is priced in

the financial markets it is most likely that associated with the first release and not

the final one, strongly contradicting the typical presumption that final releases are

the most appropriate representation of investors’ information set. We examine this

further in Section C.1 below.

Turning to the Revised CCAPM, the pricing performance is striking. With first

revisions, k = 1, the adjusted R2 is as high as 74% and MAPE about half of that of the

Standard CCAPM and the First CCAPM. The SDF loading of the first release remains

positive, but is now strongly significant. The SDF loading on the RUC is negative and

is strongly significant as well.14 Due to nestedness of the First CCAPM within the

Revised CCAPM, we may evaluate the statistical significance of the increase in R2 by

testing H0 :λrev,k = 0 (Kan et al., 2013). As such, the increase in R2 is also statistically

significant. The graphical illustration of this improvement in pricing performance can

be found in Figure A.1. The deviations from the 45-degree line are small in magnitude.

It is interesting to note that the pricing ability of the Revised CCAPM with revisions

decreases monotonically as k, the revision horizon, increases. At k = T, using so-called

final revisions, the pricing performance is close to that excluding revisions altogether,

albeit using the first release. The SDF loading of first releases is insignificant for

k > 4, with opposite and unintuitive sign. Taken together, this evidence suggest that

early data revisions of the first release are important economically and statistically.15

The implication is that investors associate revision uncertainty with risk. In other

words, it appears as if investors base their portfolio decisions on the information

contained in the first release, but care about inherent uncertainty about immediate

consumption growth.16

The adjusted cross-sectional R2 and MAPE of the benchmark models are reported

14Both t-statistics are greater than three and passess, as such, the multiple-testing corrected
threshold proposed by Harvey et al. (2016).

15The notable shift in sign of SDF loadings and pricing performance at k > 4 aligns well with the fact
that benchmark revisions occur at an annual frequency or lower.

16We have also conducted a similar asset pricing exercise using factor mimicking portfolios con-
structed on the first release and absolute revisions using least squares weights, see e.g. Jagannathan
and Wang (2007), and 10 industry portfolios obtained from Kenneth French’s website. Results are
qualitatively identical as the Revised CCAPM delivers an adjusted cross-sectional R2 of 53% and
t-statistics on the first release and revision components of 3.3 and -2.9, improving upon an R2 of 8.1%
obtained by the First CAPM. The monotonic decrease in k is maintained as well.
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in Panel B of Table 2. Among the benchmark models, the three-factor Fama-French

possesses the best pricing abilities (R2 of 70%), followed by the Ultimate CCAPM

(R2 of 57%) and the Cay-CCAPM (R2 of 47%). Keeping in mind that the three-factor

Fama-French model is explicitly designed to price the test assets in this application,

its strong performance is not surprising. Nonetheless, it is notable that even though

it has one less factor, our Revised CCAPM with k = 1 outperforms the Fama-French

model slightly on the basis of R2 and is just slightly inferior on the basis of MAPE.

This is striking, considering that the Revised CCAPM contains non-traded factors as

opposed to traded factors in the Fama-French model.

C.1. Revision horizon, predictability, and news versus noise

To get a further understanding of the striking increase in pricing performance coming

from the addition of the RUC risk with k = 1 as well as the associated monotonic

decrease in accuracy when the revision horizon increases, we first characterize the

informational content of revisions using the principles in Mankiw et al. (1984) and

Mankiw and Shapiro (1986). This involves assessing the variance profile of successive

data releases. If variance increases in revision horizon, it lends support to the

news hypothesis that revision are unpredictable and contribute with genuinely novel

information.17 On the other hand, if the variance decreases it supports the noise

hypothesis that revisions are measurement errors which serve to improve the signal-

to-noise ratio of the consumption process.

Figure 2 depicts the variance profile of consumption growth releases. The pattern

suggests that first revisions, k = 1, are special in that their informational content

is genuine news, increasing the variance from the first to second data release. On

the contrary, all remaining revisions support the noise hypothesis, with the variance

of each data release decreasing monotonically for k = 2 until k = T. The monotonic

decrease in pricing performance of the Revised CCAPM in k is perfectly consistent

with this pattern. Relatedly, earlier data releases appear less smooth than the final

release, suggesting an underlying filtering process behind fully revised NIPA data.18

This aligns well with the results in Kroencke (2017) who unwinds the filtering process

17The reasoning is that if a given data release is rational for the final release, it will be smoother
than the forecast objective. Revisions then bring new, unexploited information, which allows the data
release to become closer, thus with higher variance, to the true value.

18Supporting this hypothesis, the variance of the first and second release are statistically significantly
larger than that of the final release based on a standard F-test (p-values less than 0.1%).
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in consumption data that arguably serves to mitigate measurement error and finds

stronger pricing performance of the CCAPM using unfiltered consumption growth

as risk factor. He concludes that in contrast to measurement error, filtering is fatal

to asset pricing. More importantly, this aligns well with the improvement in pricing

performance using our First CCAPM, which suggests that using early data releases

instead of final ones results in similar effects as Kroencke (2017) obtains through

unfiltering.

If first revisions (k = 1) were strongly predictable, they would likely draw less atten-

tion and, as such, be characterized by noise according to the principles of Mankiw

et al. (1984), Mankiw and Shapiro (1986), Aruoba (2008), and Croushore (2011). To

elaborate on the results above, we consider a forecasting study aimed at illuminating

the degree of predictability of revisions. We do this in the context of conventional

predictive regressions. Specifically, we are interested in a model of the type

νt|t+k = a+bct|t +dxt +εt|t+k, (14)

where xt denote an exogenous predictor. When d = 0 and k = T the regression in (14)

reduces to a news hypothesis regression employed in e.g. Faust, Rogers, and Wright

(2005) and Aruoba (2008). The null hypothesis of interest is rationality of first releases,

i.e. unpredictability of revisions, E[νt|t+k|Ft] = 0, defined by H0 : a = 0,b = 0,d = 0.

That is, testing if the benchmark model

νt|t+k = εt|t+k (15)

suffices. This can be tested using a standard Wald test and appropriate standard er-

rors. We consider both results under the restriction d = 0 together with the maximum

predictability found using the best predictor in our set of exogenous predictors. This

set of predictors is derived from the literature on consumption growth forecasting,

containing various financial (e.g. stock market returns), macroeconomic (e.g. labour

income) and survey-based (e.g. consumer confidence index) variables. Data sources

and full results can be found in the Appendix. To generalize the findings, we conduct

both an in-sample analysis where we estimate (14) over the full sample period and a

proper out-of-sample analysis where (14) is estimated recursively with an expanding

window and forecasts generated accordingly. We set the initial training window to
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15 years (60 periods), and generate the first forecasts for 1980Q1. For out-of-sample

forecast evaluation we use a modified version of the Campbell and Thompson (2008)

out-of-sample R2, R2
OoS, where the benchmark model is zero instead of the recursive

mean of the series, i.e,

R2
OoS = 1−

∑T
t=1

(
νt|t+k −�νt|t+k

)2∑T
t=1

(
νt|t+k

)2 . (16)

This modification is done to ensure that the benchmark model is consistent with (15).

Conclusions are unaltered if we use the recursive mean of the series as a benchmark

model, indicating the first release and the exogenous predictors predict revisions

above just getting the mean right.

Table 3 reports in Panel A the results using the first release only and in Panel

B minimum Wald p-value, maximum R2, maximum R2
OoS, and minimum Diebold-

Mariano p-value across all predictive regressions, capturing the strongest evidence

in favour of predictability at each revision horizon. Overall, both panels echo the

conclusion from the informational analysis above using the principles of Mankiw

et al. (1984) and Mankiw and Shapiro (1986). Using the first release only, first

revisions are unpredictable both in-sample and out-of-sample. Predictability then

strongly increases by increasing the revision horizon, rejecting the null hypothesis of

no predictability on conventional levels at k = 2 and forward. Allowing for exogenous

predictors, conclusions are the same, though in one instance (using the Michigan

consumer confidence index) we reject the null of no in-sample predictability for k = 1 on

10% significance level. This is, however, not true out-of-sample. Moreover, correcting

for evident multiple testing using a Bonferroni correction renders the in-sample

predictability for k = 1 insignificant at all conventional levels, but retains significance

for k = 2 at a 5% level and the remaining horizons at a 1% level. For out-of-sample

predictability, we have run both the realitity check of White (2000) and the test of

superior predictive ability in Hansen (2005) for addressing multiple testing issues.19

Both test agree that predictability at k = 1 is non-existent, borderline significant

at 10% for k = 2 and significant at the 1% level for the remaining revision horizons.

These predictability results are consistent with the view that first revisions contain

19Consistent with the definition of R2
OoS we used squared prediction errors and in the implementation

of the test employed a stationary block bootstrap with 10,000 resamples and a studentized test statistic
which generally leads to stronger power (Hansen, 2005).
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news, whereas the remaining revisions generally serve to mitigate measurement

errors. We will, in the following, primarily focus on the Revised CCAPM with k = 1

for above reasons and simply refer it as Revised CCAPM.

D. What drives this result?

The improvement in pricing of the 25 size and book-to-market sorted portfolios from

using the initial consumption growth release and its revision uncertainty is striking.

In this section, we conduct a set of analyses to examine the drivers of this results.

D.1. Model identification tests on betas

As discussed in Kan and Zhang (1999) and Burnside (2016), a natural diagnostic

check that addresses concerns about weak model identification with non-tradable

and possibly useless factors is to examine the joint significance and cross-sectional

dispersion in (univariate) factor betas. We do this with a series of Wald tests, see e.g.

Eiling (2013), Dittmar et al. (2018) and Delikouras and Kostakis (2019) for related

approaches. We conduct the following five Wald tests: i) whether the 25 portfolio

betas are jointly equal to 0 (H0 : βi = 0 ∀i), ii) whether the 25 portfolio betas are

jointly equal to one another (H0 :βi =β j ∀i, j, i 6= j), iii) whether the 25 portfolio betas

are jointly equal to the average beta, β̄, (H0 : βi = β̄ ∀i), iv) whether the maximum

portfolio beta is less than or equal to the minimum portfolio beta (H0 :βmax ≤βmin),

and v) whether the beta of the portfolio with highest average excess return, βmax(r),

(the small value portfolio in this sample) is less than or equal to the beta of the

portfolio with smallest average excess return, βmin(r), (the small growth portfolio in

this sample) (H0 :βmax(r) ≤βmin(r)).

The results reported in Table 4 indicate that we can reject each of the first four

hypothesis for the first release betas on conventional significance levels, while the last

hypothesis is not rejected. For the revision uncertainty component, we strongly reject

the first four hypothesis on a 1% level and the fifth on a 5% level. We note, however,

that half of the spreads in corner portfolio betas are significant on conventional levels.

Taken together, these results alleviate the potential concern of weak identification of

the Revised CCAPM and spurious results since betas are both jointly significant and

show significant cross-sectional dispersion. In other words, we may conclude that the

25 size and book-to-market sorted portfolios covary significantly with the stochastic
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discount factor embedded in the Revised CCAPM and that these risk exposures are

significantly dispersed cross-sectionally, reflecting the dispersion in portfolio excess

returns.

D.2. Placebo tests

Despite the evidence in the former section, a reasonable concern may remain that

revisions are simply white noise that happen to line up in a convenient manner

and that the large improvements in adjusted R2 and MAPE we observe are only

due to chance. As noted by, e.g., Bryzgalova (2016) the cross-sectional R2 in the

second stage regression of the Fama-Macbeth approach can often be inflated by the

presence of a useless factor, thus, we perform a set of Monte Carlo experiments to

test this hypothesis as an additional robustness test. In a first test, we generate

10,000 bootstrap samples, of the same length as the original series, by row-wise

re-sampling (with replacement) from the revision series. Since only the revision series

is reshuffled, any possible dependence between the portfolio returns and the pricing

factor is broken, thus the factor is said to be useless. Moreover, reshuffling revisions

also breaks the link to the specific first release it pertains. For each bootstrap sample,

we follow the econometric methodology outlined in Section A, focusing on the R2 of

the second stage regression and the MAPE. We can then determine the (empirical)

probability of obtaining an R2 measure as large as the one obtained with the revision

series when the useless factor is used. A possible critique of this method is that single

row re-sampling removes any possible serial correlation in the revision series. To

accommodate this possibility we generate 10,000 placebo series that match the best

ARMA(p,q) sample fit on the revision series, determined by the BIC.20 Innovations

for the placebo series are drawn from the normal distribution with variance matching

the sample variance of the revision series. Finally, we also perform a test where

the placebo series is pure white noise with variance given by the sample variance of

revisions.

The results for these triad of tests are shown in histograms in Figure 3, which depicts

the empirical distribution of second stage adjusted R2’s and MAPE from the Revised

CCAPM but replacing revisions with placebo revisions. The black dotted line shows

the R2 and MAPE obtained by using the first release only while the blue line shows

20We find the that the revision series are best characterized by a ARMA(1,1) process.
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the adjusted R2 and MAPE obtained by adding the revisions uncertainty component.21

In general, we find that it is highly unlikely that our results are spurious. The reason

is that the probability of finding a fit as good as the one we find in the main results in

Table 2 for the Revised CCAPM and k = 1 is between 0.57% and 0.72% for adjusted

cross-sectional R2 and 0.25% and 0.36% for MAPE, depending on our assumption

about the data generating process for the useless factor. This is equivalent to saying

that the improvements in R2 and MAPE for the RUC are significant at the 1% level.

In unreported results we find that the equivalent measure for k = 2 and k = 4 lie

between 12% and 25% for the former and 19% and 41% for the latter, making them

statistically insignificant at conventional levels.

D.3. Adding size and value characteristics

Kan and Zhang (1999) show that useless factors may appear statistically significant if

the Fama-Macbeth methodology is applied to a misspecified model, and Jagannathan

and Wang (1998) show that this misspecification can be tested for by including firm

characteristics as additional explanatory variables in the cross-sectional asset pricing

tests. They show that a useless factor cannot drive out firm characteristics in the

second-stage regressions, whereas a large t-statistic on characteristics suggests that

the model may be misspecified. That is, if the firm characteristics carry no significant

SDF loading, it does not contradict the assertion of a correctly specified model. We

report here results including stock characteristics as explanatory variables in the

cross-sectional regression. Specifically, we augment the model similarly to Boguth

and Kuehn (2013) as

E[r i,t+1]=λfirstcov[ct+1|t+1, r i,t+1]+λrev,kcov[ϕk
t+1, r i,t+1]

+λMEME i +λBMBM i, (17)

where X i is the time-series average of X i,t which is comprised by the market capital-

ization ME i,t and the book-to-market ratio BMi,t for asset i. Those are arguably the

most relevant characteristics, given our present choice of test assets. Table 5 reports

the results for the Standard CCAPM, the First CCAPM, and the Revised CCAPM.

First, as expected, the two characteristics bring substantial explanatory power to the

21Note that since we use the adjusted R2 measure it is possible for the model with both the first
release and the RUC, using placebo series, to be less than that using the first release only.
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Standard CCAPM and First CCAPM as indicated by their adjusted R2 of 71-72%. In

those models, the characteristics belong to the SDF statistically significantly, and

consumption risk does not, consistent with the main results in Table 2. This may

indicate misspecification of those models. On the contrary, firm characteristics are

not included statistically in the SDF when added to the Revised CCAPM and the

first release risk and RUC risk remain statistically significant on 5% and 1% levels,

respectively, with same sign, yet somewhat smaller magnitude. The adjusted R2 is

only marginally increased compared to the model without characteristics, cf. Table

2, and correspondingly the MAPE only marginally reduced. As such, this test does

not contradict the assertion that the Revised CCAPM is a correctly specified model

without spurious factors.

D.4. Risk premia and factor exposures

While the analysis based on univariate betas is suitable for understanding whether a

given factor belongs to the SDF (in the presence of other factors) and informs about

implied utility states, multivariate betas are useful for understanding the success of

the Revised CCAPM via factor exposures (multivariate betas) and their associated

risk premia. It has no influence on pricing errors and cross-sectional R2, yet matter

for interpretation. Following Cochrane (2005) and Feng et al. (2019), we report in

Table 6 multivariate betas and their differences among the smallest and largest size

quintiles for all book-to-market quintiles and vice versa. We also report the average

excess returns for each portfolio. Reading down the columns of Panel A, average

returns generally decrease in size, confirming the size premium, except in the case

for the low book-to-market ratio quintile. Reading across the rows, average returns

generally increase in book-to-market ratio, confirming the value premium.

Panel B reports the betas from the Standard CCAPM. It is clear that the beta

decreases in size for a given book-to-market ratio quintile, whereas it is not related

to book-to-market ratios in any consistent way. The difference in betas between the

high and low book-to-market ratio quintiles is also small compared to that of the

small and big size quintiles. As such, the weak pricing performance of the Standard

CCAPM is partly due to its inability to explain the value premium, see e.g. Yogo

(2006) for a similar conclusion. On the contrary, first release betas, reported in Panel

C, has large spreads in both the size and value dimension. On the size dimension,
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first release betas show a similar pattern as final release betas, but contrary to final

release they also exhibit an increasing behavior going from low to high book-to-market

ratio quintiles. This means that using the first release helps in explaining the value

premium. Panel D reports betas associated with the RUC. It is clear that the spread

in both size and value dimensions can be large, particularly for medium-to-high book-

to-market ratio quintiles and for small-to-medium size quintiles. Consistent with a

negative risk premium, betas are increasing in the size dimension and decreasing in

the value dimension. In summary, the RUC helps explain both the size and value

premium to a very large extent.22

Since multivariate and univariate betas have a one-to-one correspondence via a

linear relationship through the covariance matrix of factors, the risk premia, γfirst

and γrev,1, can be obtained directly from the main results in Table 2. The resulting

annualized risk premia for (first release) consumption growth risk totals 5.73% per

unit risk exposure, of which first release risk only is small, equalling γfirst = 0.32%.

The risk premia for revision uncertainty risk is large, γrev,1 =−5.41%. To illustrate

the implication of this, note that the value premium for small stocks equals 10.07%

out of which almost two-thirds, γrev,1(βrev,1
11 −βrev,1

15 )= 6.44%, is due to the difference

in exposure to RUC risk. First release risk captures 0.42% points of the total value

premium. Together with the cross-sectional dispersion in betas, this elaborates on our

understanding of the substantial and significant increase in pricing performance for

the Revised CCAPM versus the First CCAPM. It is primarily driven by investors’ large

compensation for the uncertainty associated with immediate consumption growth,

captured by revision uncertainty, which is the main focus of the following section.

For comparison, the risk premia for final or first release risk without the presence

of revision uncertainty risk are relatively small at 1.29% and 2.95%, respectively.

This lends strong support for the pricing of revision uncertainty. However, more than

doubling the consumption growth risk premia simply by replacing the final release

with the first release strongly supports our arguments above that the first release is a

more suitable consumption growth risk factor than the final realease.

As shown in Section II the Revised CCAPM implies a conditional one-factor repre-

sentation with the first release as risk factor and the absolute value of revisions as
22In the Appendix we depict the relation between realized average returns and first release and RUC

betas. The figures show a clear linear relationship in both cases, with average excess return increasing
in first release betas and decreasing in revision component betas.

25



conditioning information. This decomposition allows us to get a better understanding

of the effect of revision uncertainty on cross-sectional factor exposure dispersion and

thereby on risk premia. We start by rewriting the exposure spread between corner

portfolios, i.e. small-big size and high-low book-to-market quintiles, denoted by i and

j, as

β̃first
i,t − β̃first

j,t =βfirst
i −βfirst

j + (βrev,k
i −βrev,k

j )|νt|t+k|. (18)

We then note that we empirically find that the first element of this decomposition

(Panel C), βfirst
i −βfirst

j , is always positive while the second element (Panel D), βrev,k
i −

β
rev,k
j , is always negative. Since |νt|t+k| ≥ 0, revision uncertainty has a dampening

effect on the spread between conditional exposures. In the absence of any revision

uncertainty, |νt|t+k| = 0, consumption exposure spreads are given by first release

betas, but these differences become smaller the larger the revision uncertainty at

time t. Overall, it appears that revision uncertainty has the effect of reducing

the difference in consumption exposure across firms with different characteristics.

Focusing on the value dimension where the dampening effect is largest, we note

that this mechanism can be related to the impact of uncertainty on the value of

investment opportunities and associated capital adjustment costs. Nishimura and

Ozaki (2007) show theoretically that uncertainty about the economy reduces the value

of investment opportunities and associated capital expenditure. These effects are

confirmed empirically in Neamtiu, Shroff, White, and Williams (2014). This leads

to a larger amount of capital adjustments for growth firms relative to value firms.

Since good states of the economy occur more often and last longer than bad states,

adjustment costs for growth firms are likely on par or even greater than that for

value firms unconditionally (Zhang, 2005). Given those higher adjustment costs, the

flexibility in growth firms are weakened in uncertain times which causes, in response,

their returns to be more dependent on the current state. That is, it increases their

exposure to consumption more relative to value firms. The story is consistent with

the fact that factor exposures to the revision uncertainty component (Panel D) for

high book-to-market firms, in particular within small-to-medium size quintiles, are

close to zero, as opposed to large values for low book-to-market ratio quintiles.

E. Consumption growth shocks, risk, or ambiguity?

In this section, we examine the implications of our asset pricing results for the

understanding of the risk associated with consumption growth revisions. We entertain
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three plausible interpretations. First, revisions may represent shocks to consumption

growth which enter the SDF directly, in accordance with the logic in the Standard

CCAPM. If this is the case, positive revisions (surprises) are associated with high

marginal utility states. Secondly, revisions may capture risk or, thirdly, ambiguity

surrounding immediate consumption growth. The distinction between risk and

ambiguity is important and we will examine this further below. While the expected

sign of the SDF loading on risk and ambiguity is not entirely clear, one might be

tempted to associate the magnitude of revisions in those cases with low marginal

utility states and, thus, a negative SDF loading.23 We investigate this further in the

following sections.

E.1. Consumption growth shocks?

To test whether revisions are perceived by investors as if they represent consumption

growth shocks, we derive a version of the Standard CCAPM that incorporates the

decomposition in (8) in the following Proposition.24

Proposition 1 (Standard CCAPM with revisions). Under regular assumptions of

the Standard CCAPM, the decomposition in (8) implies that the model admits a

beta-representation of the form

E[r i,t+1]=βfirst
i γfirst +βrev,k

i γrev,k, (19)

where

βfirst
i = cov[r i,t+1, ct|t+1]

var[ct|t+1]
, β

rev,k
i = cov[r i,t+1,νt+1|t+1+k]

var[νt+1|t+1+k]
, (20)

and

γfirst = γcηfirst, γrev,k = γcηrev,k, (21)

with variance ratios ηfirst = var[ct|t+1]/var[ct+1|T ] and ηrev,k = var[νt+1|t+1+k]/var[ct+1|T ].

23For example, Boguth and Kuehn (2013) find that conditional consumption growth volatility de-
mands a negative price, whereas Dew-Becker et al. (2019) find that increasing ambiguity is linked to
high marginal utility states but realized volatility, measuring risk, is linked to low marginal utility
states. Segal, Shaliastovich, and Yaron (2015) find that risk enters the SDF positively in good states
but negatively in bad states.

24The derivations behinds the Proposition can be found in the Appendix.
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This result can be generalized to hold for any macroeconomic-based factor model that

assumes ct+1 = g( f t+1) for both linear and non-linear functions g(·). By corollary of

Proposition 1, the associated representation using SDF loadings reads

E[r i,t+1]=λfirstcov[ct+1|t+1, r i,t+1]+λrev,kcov[νt+1|t+1+k, r i,t+1]. (22)

Note that λrev,k (and γrev,k) is different from the the one in Revised CCAPM as it

relates to the covariance of returns with revisions in levels and not the RUC, ϕk
t+1. If

k = T, we get a straightforward decomposition of the final Standard CCAPM that is

typically employed in the literature. In the Standard CCAPM, γc ≥ 0. Since ηi ≥ 0,

i ∈ {first,rev} it follows that γfirst,λrev,k ≥ 0. That is, according to Proposition 1, if

the Standard CCAPM were to capture revisions, they should carry a positive price.

The logic is similar to the conventional logic in that positive shocks to immediate

consumption growth, i.e. positive revisions to consumption growth, are associated

with good states with high marginal utility. Any positive covariance between asset i’s

return and revisions are considered risky and would demand a positive compensation.

We estimate this model following similar procedures as in Section A and report

the results for k = 1,2,4,12,T in Table 7. The results show that there is indeed

information in revisions in levels, showing a considerable improvement relative to

the Standard CCAPM and First CCAPM. However, the improvement is smaller when

compared to the Revised CCAPM and it is only significant on the 5% level for k = 1.

The decrease in pricing performance when increasing the revision horizon is present

here as well. An important finding is that revisions in levels enter the SDF negatively.

This is inconsistent with the Standard CCAPM using revisions as in Proposition 1.

As such, we conclude that revisions may not be interpreted as simply consumption

growth shocks and the improvement seen in this model require a different explanation.

We examine this in the following section.

E.2. Consumption growth risk or ambiguity?

If we instead consider the absolute value of revisions, the implication is that investors

do not necessarily care about the direction of revisions but rather its magnitude. This

may be consistent with the idea of risk or ambiguity. Although the two terms are

often used interchangeably with ambiguity typically mentioned as uncertainty, the

distinction between risk and ambiguity is both behaviorally, empirically, and theoreti-
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cally important. Risk refers to situations where the distribution of random outcomes,

e.g. consumption growth, is known to the decision maker, while uncertainty or ambi-

guity (sometimes called Knightian uncertainty (Knight, 1921)) refers to the situation

where the decision maker is uncertain about the distribution of these outcomes due

to cognitive or informational constraints.25 The distinction is particularly important

in financial markets since risk and ambiguity can have completely opposing impacts

on aspects that span from asset pricing (Epstein and Schneider, 2010; Guidolin and

Rinaldi, 2013; Brenner and Izhakian, 2018) to payout policy (Dahya, Herron, and

Izhakian, 2019) and even capital structure of the firm (Izhakian, Yermack, and Zender,

2019). Aversion to both risk and ambiguity has been documented in the literature,

dating back to e.g. Keynes (1937) and Ellsberg (1961) and recently in Dew-Becker

et al. (2019).26

Table 8 reports the results estimating the following model

E[r i,t+1]=λfirstcov[ct+1|t+1, r i,t+1]+λrev,kcov[|νt+1|t+1+k|, r i,t+1], (23)

using absolute revisions instead of levels. We refer to this model as |Standard

CCAPM|. The performance is solid though not as impressive as including revisions

in levels nor our proposed Revised CCAPM. Yet, the SDF loading is negative and

significant at 10% for k = 1. The natural question arises; how come the Revised

CCAPM provides so large improvements, simply by interacting absolute revision

with the first release, when using the absolute revision alone does not? To guide our

answer, we examine the relationship between absolute revisions and natural proxies

classified as either risk or ambiguity.

Our first proxy for risk is adopted from Anderson et al. (2009) who empirically

distinguish between (asset return) risk and uncertainty. We follow their approach and

identify consumption growth risk as its conditional volatility. As such, we estimate

a GARCH(1,1) model similarly to Tédongap (2015), on the first release series,27 and

25In our context, risk refers to the situation where future consumption growth is random and not
known today, yet comes from a known probability distribution. Ambiguity, on the other hand, refers to
the situation where the probability distribution is also uncertain.

26Ellsberg’s paradox, often taken to be evidence for ambiguity aversion, builds upon the idea that
individuals prefer taking on risks with known probabilities of being better or worse off as opposed to
risks where the probabilities are uncertain.

27Results are similar, however, using the final consumption growth series.
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use the fitted values σ̂GARCH
t+1 as our first proxy for consumption growth risk. Our

second measure of risk is the conditional volatility estimate from a markov-switching

model from Boguth and Kuehn (2013) σ̂MS
t+1. Our final risk measure is inspired by

Dew-Becker et al. (2019), who posit that a better measure for risk is realized volatility.

To obtain such a measure in our context, we construct a monthly vintage data set

of real nondurable consumption growth similarly to our quarterly data set obtained

from ALFRED. We then compute quarterly realized volatility as per

RVt+1 =
3∑

j=1
(ct+i/3|t+i/3 − c̄)2, (24)

where i = 1,2,3 represents the first, second, and third month within the quarter

t+1, ct+i/3|t+i/3 the first release pertaining to month i, and c̄ the average monthly

logarithmic growth rate.28 Our first ambiguity proxy follows Anderson et al. (2009),

using the dispersion in individual forecasts’ on consumption growth from the Survey

of Professional Forecasters (SPF) provided by the Federal Reserve Bank of Philadel-

phia.29 We obtain quarterly real consumption growth rate forecasts for the current

quarter in which the survey is conducted. That is, we use the nowcast by all individ-

ual forecasters. We then construct our first ambiguity proxy as the cross-sectional

standard deviation, consistent with e.g. Anderson et al. (2009) and Drechsler (2013),

of those individual forecasts at all time points as per

SPFt+1 =
(

1
Pt+1 −1

Pt+1∑
p=1

(
ĉt+1,p − 1

Pt+1

Pt+1∑
p=1

ĉt+1,p

)2)1/2

, (25)

where Pt+1 is the number of provided forecasts at time t+1 and ĉt+1,p is the consump-

tion growth forecast made by forecaster ID denoted p.30 Our second ambiguity proxy

follows e.g. Bloom (2009) and Williams (2014) defined as the implied volatility, IVt+1,

on a hypothetical at-the-money option on the S&P 100 index which is consistent with

28This definition is similar to concept of realized volatility used in the high-frequency literature, see
e.g. Andersen, Bollerslev, Diebold, and Labys (2001, 2003)

29Various papers use dispersion in professional forecasters as proxy for ambiguity. A few references
are Ulrich (2013), Drechsler (2013), Rossi and Sekhposyan (2015), and Lee et al. (2019). Moreover,
Della Corte and Krecetovs (2019) show formally how forecast dispersion can be seen as a natural
proxy for uncertainty and Patton and Timmermann (2010) contend that forecast dispersion among
professional forecasters can only reflect heterogeneity in models and not in information sets.

30We have also used the difference between the 75’th and 25’th percentile of the forecast distribu-
tion consistent with the definition of forecast dispersion by Federal Reserve Bank of Philadelphia.
Conclusions are unaltered.
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the use of implied volatility in Dew-Becker et al. (2019) and Berger, Dew-Becker,

and Giglio (2019a). We use the VXO, as opposed to the VIX option-implied volatility,

because the former is available from 1986 and the latter from 1990. The VXO and

VIX are, however, almost perfectly correlated. We note that this variable is not explic-

itly formulated with a relation to consumption growth, as opposed to the remaining

variables. Data availability limits the starting point of our analysis to 1982:Q1 using

SPF data and 1986:Q3 using VXO data, and the end point to 2009:Q3 when using the

markov-switching conditional volatility of Boguth and Kuehn (2013).

To examine the relationship between revision uncertainty, |νt+1|t+1+k|, and our risk

and ambiguity proxies, Table 9 reports the results of regressing absolute revisions

onto various combinations of our proxies. We standardize all variables in the in-

terest of exposition. That is, let RISK t+1 = (σ̂GARCH
t+1 ,RVt+1, σ̂MS

t+1)′ and AMBt+1 =
(SPFt+1, IVt+1)′. We consider the following regressions

|νt+1|t+1+k| = θRISK t+1 +ψAMBt+1 +ut+1, (26)

for various permutations of RISK t+1 and AMBt+1, k = 1, and ut+1 is an error term.

The results are striking. Across all combinations, revisions are unrelated to our risk

proxies except in one specification. When it comes to ambiguity we find that RUC is

significantly related to both our ambiguity proxies. This relation is particularly strong

when using SPF cross-sectional dispersion, showing t-statistics using HAC standard

errors well above five in most cases. The sign of the ambiguity coefficients are always

positive and large in magnitude compared to mixed signs of the risk coefficients and

relatively small magnitudes.31 In Figure 4 we depict |νt+1|t+1+k|, k = 1, together with

SPFt+1. The figure echoes our findings above, showing a striking similarity in the

dynamics of absolute revisions and SPF dispersion both within and outside crisis

periods.32

31We have also implemented the regressions in (26) with the newspaper-based economic policy
uncertainty (EPU) index of Baker et al. (2016) and the credit spread (CS) (Bekaert, Engstrom, and
Xu, 2019) measured as the difference in BAA and AAA-rated corporate bond yields in place of the
ambiguity proxies used in the main results. Conclusion are identical, with EPU and CS statistically
significant on generally 1% level and with positive and large coefficients. The risk proxies remain
insignificant.

32Replacing νt+1|t+1+k,k = 1 by the SPF ambiguity proxy in the Revised CCAPM leads to an adjusted
cross-sectional R2 on the 25 size and book-to-market ratio sorted portfolios of 56% and statistically
significant λs on 10% and 5% level for first release and revision component, respectively.
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E.3. Implications for interpretation of the Revised CCAPM

Our evidence above suggests that absolute revisions are strongly related to the

ambiguity surrounding consumption growth. Our asset pricing results indicate that

when absolute revisions are interacted with first release, as in the Revised CCAPM,

the pricing ability is striking. It also strongly outperforms a model that uses the

absolute revisions only. We understand these results in the context of state-dependent

ambiguity attitudes. Recent psychological experiments show that ambiguity aversion

exists after having seen a particular data sample (Smithson et al., 2019). This means

that investors might be uncertain about the underlying distribution of consumption

even if they have observed all past releases. A recent contribution by Brenner and

Izhakian (2018) finds evidence of state-dependent ambiguity attitudes in the relation

to stock market returns.33 Ambiguity aversion increases with increasing probability

of a favourable outcome, in this case a return, and vice versa. The logic is that with

a high probability of a favourable outcome, ambiguity aversion is high as investors

prefer the certainty around the outcome. On the other hand, with a high probability

of an unfavourable outcome, ambiguity aversion is low as investors like that this is in

fact uncertain.

To provide some further intuition, we can revisit our results in Section II. With a state

of the economy determined by ct+1|t+1 and |νt+1|t+1+k|, k = 1, measuring ambiguity,

the interaction between those, i.e. ϕk
t+1, captures directly the state-dependency of

ambiguity. Our asset pricing results conclude that the compensation for positive

covariance risk with this RUC is negative. That is, investors perceive high values

of ϕk
t+1 as low marginal utility and are willing to pay a premium for an insurance,

that is, pay a premium for a positive covariance, cov[r i,t+1,ϕk
t+1]. On the other hand,

investors dislike low or negative covariances and require compensation for holding

assets with those characteristics.

Suppose now that investors care about whether their consumption is going up or

down and classify states as positive and negative on this basis. That is, ct+1|t+1 > 0

defines a good state and vice versa. Conditional on being in a good state, ϕk
t+1

33There is also strong evidence from the behavioral and experimental economics literature that
attitudes towards ambiguity are state dependent, with ambiguity aversion for positive states (high
probability of gain) and ambiguity seeking for negative states (high probability of a loss), see, e.g.,
Mangelsdorff and Weber (1994); Di Mauro and Maffioletti (1996); Du and Budescu (2005); Chakravarty
and Roy (2009); Kothiyal (2012)
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increases if |νt+1|t+k| increases. Conditional on being in a bad state, ϕk
t+1 increases

if |νt+1|t+k| decreases. Both cases are disliked by an investor with state-dependent

ambiguity attitudes. The investor is averse to increasing uncertainty in good states

and decreasing uncertainty in bad states, which is jointly captured by increases in

ϕk
t+1. As noted above, the investor likes assets that pay returns in periods with

increasing ϕk
t+1 as it provides a hedge against unfavourable ambiguity, which explains

the negative SDF loading and risk premium.

Note, however, that this interpretation and our baseline results above rely on the

implicit assumption that investors classify states according to a reference point equal

to zero. In other words, positive consumption growth is a positive state and vice

versa. This could naturally be obtained simply by de-meaning the first release before

entering the model, which would not change any results if it entered linearly. However,

the first release enters non-linearly through ϕk
t+1, which does not guarantee that

de-meaning of the first release to ensure a zero reference point has no implication for

results. To address this potential concern, one may consider the general situation

where investors classify states according to some generic reference point c̃t+1. This

reference point can be fixed or time varying, possibly driven by habit formation

(Campbell and Cochrane, 1999; Atanasov, Møller, and Priestley, 2019) or certainty

equivalents (Delikouras and Kostakis, 2019). We investigate this case in the Appendix

and find that all conclusions are insensitive to choosing among a large set of plausible

candidates for a fixed or time-varying reference point, e.g. the unconditional mean,

the time varying certainty equivalent of first release consumption growth, cyclical

consumption growth, or using either equally- and exponentially-weighted moving

averages over the past 1-10 years. The SDF loadings always have the same sign and

similar statistical significance as in our baseline results that implicitly set c̃t+1 = 0.

The adjusted cross-sectional R2 remains high. If anything, our baseline results

are slightly conservative. We may therefore conclude that investors make portfolio

decisions and evaluate financial assets as if they assess their aversion to ambiguity,

depending on the state of consumption growth.

As a remark, we may also use this interpretation to understand the negative price

obtained on revisions in levels, which was not reconcilable with the Standard CCAPM

and Proposition 1. To see this, note that for any time series yt, t = 1, . . . ,T, it holds

that yt = sign(yt)|yt|. It was clear that from the summary statistics in Table 1 that
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revisions are strongly business cycle dependent, with its sign capturing the states

in consumption growth. Using revisions in levels is, thus, identical to using the

interaction between the sign of revisions and its absolute value, sign(νt+1|t+1+k) ·
|νt+1|t+1+k|, that is, to the interaction between a proxy of the state of consumption

growth and its surrounding ambiguity. In other words, revisions in levels may capture

similar features as the RUC, ϕk
t+1, above, and rationalizes the negative SDF loading

obtained in Table 7.

As a final remark, this interpretation suggests that absolute revisions, i.e. ambiguity,

is perceived differently by investors according to states. Simply using absolute

revisions as in |Standard CCAPM| above does not capture this state dependence

implying a cancelling out effect unconditionally, causing the pricing performance

decrease relative to our Revised CCAPM. Since good states, where ambiguity is

disliked and positive covariances between returns and absolute revisions preferred,

occur more frequently and last longer, they dominate unconditionally causing the

SDF loading in Table 8 to be negative.

IV. Large panel of characteristics-sorted portfolios

To ensure that our results are not driven by the choice of test assets, and to alleviate

the critique of Lewellen et al. (2010), we conduct an analysis on a large panel of

characteristics-sorted portfolios in a spirit similarly to Giglio and Xiu (2018). We

gather 202 portfolios over the 1965-2015 period, comprised by 17 industry portfolios,

25 portfolios sorted by size and book-to-market ratio, 25 portfolios sorted by operating

profitability and investment, 25 portfolios sorted by size and variance, 25 portfolios

sorted by size and momentum, 35 portfolios sorted by size and net issuance, 25

portfolios sorted by size and accruals, and 25 portfolios sorted by size and stock

market beta. Portfolio returns are obtained from Kenneth French’s library. This set of

portfolios captures a vast cross-section of anomalies and exposures to various factors.

We then randomly sample, without replacement, 25 portfolios and re-estimate the

Standard CCAPM, First CCAPM, Revised CCAPM and benchmark models on each

sample.34 Repeating this exercise 10,000 times obtains a distribution of SDF loadings,

λs, their t-statistics, and the adjusted cross-sectional R2 across the subsamples. We

are specifically interested in, firstly, whether the sign and significance of the SDF

34Conclusions are similar by resampling 50 and 101 portfolios.

34



loadings obtained in the Revised CCAPM on the 25 portfolios sorted on size and book-

to-market ratio generalize to this large, comprehensive set of assets and, secondly,

whether the strikingly strong pricing ability of the Revised CCAPM compared to its

consumption-based benchmarks remains.

Figure 5 depicts the distribution of SDF loadings and associated t-statistics when es-

timating the Revised CCAPM on each subsample. It is clear that the the SDF loading

of first release risk is positive and the loading on RUC risk is negative in almost all

subsamples. In fact, this happens in 99.2% (98.5%) of the cases, respectively.35 These

findings are, as such, consistent with the findings in Table 2. In the vast majority

of the cases the SDF loading is also statistically significant on conventional levels

for both factors. In 67.1% of the cases the first release risk is significant on a 5%

level, whereas in 62.5% of the cases the RUC risk is statistically significant on the

same significance level. We therefore conclude that the sign and significance of the

SDF loadings in the Revised CCAPM generalize to this large cross-section of portfolio

returns and, as such, the economic intuition presented in Section E is valid in general

across stocks.

Table 10 reports the average adjusted cross-sectional R2 across all subsamples for

each model under consideration in addition to the proportion of the subsamples where

the Revised CCAPM generates a greater R2 than its comparing models. Overall,

the Revised CCAPM performs well in this expanded set of portfolios, outperforming

the Standard CCAPM, First CCAPM, Q4-Q4 CCAPM and Cay CCAPM in most

subsamples while performing approximately on par with the Ultimate CCAPM.

V. Concluding remarks

This paper provides an analysis of the implications of the consumption data release

process, as reported in vintage NIPA tables, for asset pricing. We propose a new

consumption-based asset pricing model, the Revised CCAPM, which captures this

data release process explicitly using vintage data. Our empirical results conclude that

first data releases are more suitable than final releases for asset pricing. This is due

to the former avoiding revisions that serve to mitigate measurement errors, providing

an explanation as to why unfiltered consumption (Kroencke, 2017), garbage (Savov,
35The associated risk premia share a similar conclusion, with 77.4% and 76.6% of the subsambles

yielding a positive and negative sign for the first release and RUC risk, respectively.
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2011), and electricity (Da and Yun, 2010) are successful in asset pricing. Moreover,

the pricing ability of the Revised CCAPM is striking when modelling the uncertainty

captured by early revisions. We find that absolute revisions are strongly related to

consumption growth ambiguity but neither to consumption growth shocks nor to

risk. Our results can be understood in the context of state-dependent ambiguity

attitudes. In good consumption states, ambiguity is disliked, but in bad states it

is preferred. Investors are willing to pay a large premium to insure against state-

dependent ambiguity risk, constituting the vast majority of total risk premium on

consumption growth.

The implications of our findings are wide. They suggest that, based on a relation to

Kroencke (2017), that early consumption data releases are more suitable for asset

pricing, since they avoid a filtering process in revisions occuring after the most early

ones. It also raises the question whether the use of first versus final releases has an

impact on other consumption-based asset pricing models’ pricing ability, as well as the

incorporation of the important uncertainty or ambiguity coming from early revisions.

Whether our findings extent to general macro-based factor models as in, e.g., Chen

et al. (1986) is another interesting question. A related aspect is whether absolute

revisions from other macroeconomic series are as strongly linked to ambiguity as we

document in this present paper. Moreover, capturing time-varying and in particular

state-dependent ambiguity attitudes in a consumption-based structural framework

is a further natural step for future research, possibly extending the model in Ju and

Miao (2012). We expect to pursue several of these questions in future work.
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Table 1: Summary statistics of consumption growth vintages
This table reports the summary statistics of real time data, revisions and
final data for real nondurable consumption growth for the period 1965:Q1
to 2018Q4. The three panels cover, respectively, the full sample, NBER
expansions, and recessions. The final revised data is labeled ct|T , first
release is labeled ct|t and revisions released k periods after first release
are labeled νt|t+k. The column labeled SD denotes the standard deviation,
NS denotes the noise to signal ratio, var[vt|t+k]/var[ct|T ], and AC(1) the
first-order autocorrelation. Superscripts ***, **, and *, used only in the
first column on means of revisions, correspond to statistical significant
at significance levels one, five, and ten percent, respectively, using HAC
standard errors that are robust to heteroskedasticity and autocorrelation
by Newey and West (1987) with a Bartlett kernel and data-driven lag
selection based on Andrews (1991).

Correlations

Variable Mean SD NS Min Max AC(1) ct|T ct|t

Panel A: 1965:Q1-2018:Q2
ct|T 2.38 2.73 - -5.88 13.63 0.23 - 0.69

ct|t 2.16 3.26 1.19 -7.39 10.20 0.07 0.69 -

νrev
t|t+1 0.12 1.17 0.43 -4.27 4.14 0.06 0.21 -0.06

νrev
t|t+2 0.10 1.24 0.45 -4.27 4.01 0.01 0.16 -0.17

νrev
t|t+4 0.20* 1.48 0.54 -4.39 4.33 0.02 0.07 -0.28

νrev
t|t+12 0.18 1.92 0.70 -4.48 5.49 -0.07 0.08 -0.53

νrev
t|T 0.22 2.42 0.88 -10.17 7.21 0.00 0.21 -0.57

Panel A: 1965:Q1-2018:Q2, NBER expansions
ct|T 2.89 2.40 - -3.52 13.63 0.04 - 0.61

ct|t 2.55 3.07 1.28 -6.25 10.20 -0.00 0.61 -

νrev
t|t+1 0.22*** 1.13 0.47 -2.91 4.14 0.01 0.08 -0.21

νrev
t|t+2 0.17** 1.19 0.50 -3.79 4.01 -0.03 0.10 -0.25

νrev
t|t+4 0.27** 1.43 0.59 -4.39 4.33 -0.06 0.06 -0.32

νrev
t|t+12 0.28* 1.97 0.82 -4.48 5.49 -0.10 0.05 -0.62

νrev
t|T 0.34* 2.49 1.04 -10.17 7.21 0.01 0.22 -0.65

Panel B: 1965:Q1-2018:Q2, NBER recessions
ct|T -0.33 2.81 - -5.88 4.07 0.23 - 0.84

ct|t 0.09 3.50 1.24 -7.39 6.36 0.07 0.84 -

νrev
t|t+1 -0.42* 1.24 0.44 -4.27 1.54 0.15 0.36 0.24

νrev
t|t+2 -0.29 1.42 0.51 -4.27 2.65 0.15 0.14 -0.10

νrev
t|t+4 -0.17 1.71 0.61 -4.27 2.65 0.33 -0.09 -0.38

νrev
t|t+12 -0.32 1.60 0.57 -2.32 3.85 0.13 -0.08 -0.44

νrev
t|T -0.42 1.90 0.68 -4.97 3.55 -0.14 -0.07 -0.60



Table 2: Estimation of asset pricing models
This table reports the estimated SDF loadings (λs), adjusted cross-sectional
R2 and mean absolute pricing errors (MAPE) for the Standard CCAPM,
First CCAPM, and Revised CCAPM using k = 1,2,4,12,T and the bench-
mark models described in Section III.B. The test assets are the 25 size and
book-to-market ratio sorted portfolios. Standard errors of the SDF loadings
are reported in parenthesis below each estimate, using GMM standard
errors that are robust to errors-in-variables as well as to heteroskedasticity
and autocorrelation by Newey and West (1987) with a Bartlett kernel and
data-driven lag selection based on Andrews (1991).

Model λfinal λfirst λrev,k R2(%) MAPE(%)

Standard CCAPM 0.17 8.63 2.05

(1.05)

First CCAPM 0.27 18.50 1.92

(No revisions) (1.54)

Revised CCAPM 0.73 -0.68 73.82 1.07

(k = 1) (3.55) (-3.38)

Revised CCAPM 0.56 -0.44 50.02 1.50

(k = 2) (2.98) (-2.75)

Revised CCAPM 0.54 -0.28 40.44 1.67

(k = 4) (2.71) (-2.10)

Revised CCAPM -0.15 0.20 27.10 1.74

(k = 12) (-0.77) (2.58)

Revised CCAPM -0.21 0.11 25.94 1.65

(k = T) (-1.17) (3.01)

Ultimate CCAPM 56.89 1.30

Q4-Q4 CCAPM 8.24 1.99

Cay CCAPM 46.55 1.47

Fama-French 69.75 1.01
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Table 3: Predictability of revisions
This table reports in-sample and out-of-sample results for predictive regres-
sions at revision horizons k = 1,2,4,12,T. Panel A reports results using
the first release only as predictor, whereas Panel B reports the result most
in favour of predictability across all models that uses in addition a single
exogenous predictor. That is, the minimum Wald p-value, maximum R2,
maximum R2

OoS, and minimum Diebold-Mariano p-value. Those predic-
tors are presented in the Appendix along with all underlying results. The
left panel shows p-values associated with a Wald test of H0 : a = 0,b = 0 in
Panel A and H0 : a = 0,b = 0,d = 0 in Panel B as well as the R2 from the
in-sample analysis. The right panel shows R2

OoS and p-values associated
with a Diebold-Mariano (DM) test of equal predictive ability between the
predictive model and the benchmark model employing νt|t+k = εt|t+k. We
use HAC covariance matrices that are robust to heteroskedasticity and
autocorrelation by Newey and West (1987) with a Bartlett kernel and
data-driven lag selection based on Andrews (1991). For the out-of-sample
analysis, we use an expanding window scheme with an initial window of
15 years (60 time periods), and generate the first forecasts for 1980Q1.
Bold values indicate rejection of 5% significance level (without possible
correction for multiple testing).

In-sample Out-of-sample

Revision horizon Wald p-value R2(%) R2
OoS(%) DM p-value

Panel A: Using first release only (d = 0)

k = 1 0.389 0.35 -1.07 0.644

k = 2 0.069 2.92 3.63 0.034

k = 4 0.000 7.98 12.18 0.010

k = 12 0.000 27.61 32.75 0.049

k = T 0.000 32.51 - -

Panel B: Strongest predictability among all predictors

k = 1 0.071 0.35 1.11 0.359

k = 2 0.002 6.81 4.65 0.014

k = 4 0.000 11.19 15.01 0.003

k = 12 0.000 34.11 38.91 0.029

k = T 0.000 41.03 - -
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Table 4: Wald tests for univariate beta identification
This table reports Wald test and associated p-values regarding joint signifi-
cance and cross-sectional dispersion of Revised CCAPM univariate betas
on the 25 portfolios sorted on size and book-to-market ratio as test assets.
The table uses univariate betas from the first-stage Fama-MacBeth esti-
mation in Section III and forms test statistics using a HAC covariance
matrix robust to heteroskedasticity and autocorrelation by Newey and
West (1987) with a Bartlett kernel and four lags. Based on these estimates,
we conduct the following five Wald tests: i) whether the 25 portfolio betas
are jointly equal to 0 (H0 :βi = 0∀i), ii) whether the 25 portfolio betas are
jointly equal to one another (H0 : βi = β j ∀i, j, i 6= j), iii) whether the 25
portfolio betas are jointly equal to the average beta, β̄, (H0 :βi = β̄∀i), iv)
whether the maximum portfolio beta is less than or equal to the minimum
portfolio beta (H0 : βmax ≤ βmin), and v) whether the beta of the portfolio
with highest average excess return, βmax(r), (the small value portfolio in
this sample) is less than or equal to the beta of the portfolio with smallest
average excess return, βmin(r), (the small growth portfolio in this sample)
(H0 :βmax(r) ≤βmin(r)).

Null hypothesis

βi = 0∀i βi =β j ∀i, j, i 6= j βi = β̄∀i βmax ≤βmin βmax(r) ≤βmin(r)

Panel A: First release
Wald 45.878 43.057 43.714 42.286 0.073

p-value 0.007 0.010 0.012 0.000 0.394

Panel B: Revision uncertainty
Wald 66.763 66.072 71.775 35.018 3.984

p-value 0.000 0.000 0.000 0.000 0.023
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Table 5: Revised CCAPM with characteristics
This table reports the estimated SDF loadings (λs), adjusted cross-sectional
R2 and mean absolute pricing errors (MAPE) for the standard CCAPM,
First CCAPM and Revised CCAPM (using k = 1), when including the
time series average of market capitalization and book-to-market ratio
on the second stage regression of the Fama and MacBeth (1973) two-pass
methodology. The test assets are the 25 size and book-to-market ratio sorted
portfolios. Standard errors of the SDF loadings are reported in parenthesis
below each estimate, using GMM standard errors that are robust to errors-
in-variables as well as to heteroskedasticity and autocorrelation by Newey
and West (1987) with a Bartlett kernel and data-driven lag selection based
on Andrews (1991).

Model λfinal λfirst λrev,1 λME λBM R2(%) MAPE(%)

Standard CCAPM -0.08 -0.77 0.83 71.85 1.11

(-0.63) (-2.70) (2.44)

First CCAPM -0.05 -0.70 0.85 70.96 1.15

(-0.34) (-2.70) (2.38)

Revised CCAPM 0.40 -0.44 -0.37 0.39 79.00 0.92

(2.25) (-2.75) (-1.46) (1.22)
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Table 6: First stage betas and cross-sectional dispersion
This table shows average real excess return (Panel A) and estimates
of first-stage multivariate regression betas of the Standard CCAPM
(Panels B) and Revised CCAPM, k = 1, (Panels C and D) across
quintiles using 25 size and book-to-market sorted portfolios. The
bottom row in each panel shows the difference between returns and
betas of the smallest and largest size portfolios for a given book-to-
market quintile. Similarly, the rightmost column shows the difference
between the highest and lowest book-to-market quintile for a given
size quintile.

Low BM 2 3 4 High BM High-Low

Panel A: Average real excess returns (ann. %)
Small size 4.53 10.79 10.48 13.40 14.60 10.07

2 6.95 10.09 11.32 11.99 12.53 5.58

3 7.12 10.42 9.52 11.26 13.19 6.06

4 8.26 7.76 8.76 10.81 10.60 2.34

Big size 6.01 6.50 6.56 5.98 8.30 2.29

Small-Big -1.48 4.29 3.91 7.42 6.29

Panel B: Final release betas
Small size 4.05 4.53 3.49 3.60 4.02 -0.03

2 3.64 3.21 3.03 3.20 3.54 -0.10

3 3.91 3.16 2.75 2.76 2.94 -0.97

4 3.25 2.92 2.92 2.60 3.97 0.72

Big size 2.45 2.11 2.49 2.46 2.96 0.51

Small-Big 1.60 2.42 1.00 1.15 1.06

Panel C: First release betas
Small size 1.10 1.52 1.54 1.89 2.43 1.32

2 0.24 0.73 0.67 0.98 1.80 1.56

3 0.23 0.90 0.92 0.98 1.24 1.02

4 0.29 0.86 1.07 0.74 0.76 0.47

Big size -0.63 -0.05 0.22 0.08 0.84 1.47

Small-Big 1.73 1.57 1.32 1.82 1.58

Panel D: Revision uncertainty betas (k = 1)

Small size 1.02 0.77 0.23 0.12 -0.17 -1.19

2 1.16 0.67 0.46 0.64 0.20 -0.96

3 1.11 0.61 0.40 0.31 0.09 -1.02

4 0.97 0.54 0.55 0.45 0.79 -0.17

Big size 1.40 1.08 0.88 1.06 0.61 -0.79

Small-Big -0.38 -0.32 -0.65 -0.95 -0.78



Table 7: Standard CCAPM with revisions in levels
This table reports the estimated SDF loadings (λs), adjusted cross-sectional
R2 and mean absolute pricing errors (MAPE) for the Standard CCAPM,
First CCAPM and modified version of the Standard CCAPM where con-
sumption data is decomposed into a first release and the revision component
at different horizons k, as per Proposition 1. The test assets are the 25 size
and book-to-market ratio sorted portfolios. Standard errors of the SDF load-
ings are reported in parenthesis below each estimate, using GMM standard
errors that are robust to errors-in-variables as well as to heteroskedasticity
and autocorrelation by Newey and West (1987) with a Bartlett kernel and
data-driven lag selection based on Andrews (1991).

Model λfinal λfirst λrev,k R2(%) MAPE(%)

Standard CCAPM 0.17 8.63 2.05

(1.05)

First CCAPM 0.27 18.50 1.92

(No revisions) (1.54)

Standard CCAPM 0.27 -0.63 48.64 1.48

(k = 1) (1.48) (-2.12)

Standard CCAPM 0.30 -0.48 37.28 1.59

(k = 2) (1.71) (-1.73)

Standard CCAPM 0.26 -0.51 40.33 1.58

(k = 4) (1.49) (-1.80)

Standard CCAPM 0.25 -0.25 18.29 1.87

(k = 12) (1.34) (-0.88)

Standard CCAPM 0.26 -0.10 16.05 1.89

(k = T) (1.46) (-0.55)
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Table 8: Standard CCAPM with absolute revisions
This table reports the estimated SDF loadings (λs), adjusted cross-
sectional R2 and mean absolute pricing errors (MAPE) for the Standard
CCAPM, First CCAPM and modified version of the Standard CCAPM,
|Standard CCAPM| , where risk factors are the first release data and the
absolute value of revisions at different horizons k. The test assets are
the 25 size and book-to-market ratio sorted portfolios. Standard errors of
the SDF loadings are reported in parenthesis below each estimate, using
GMM standard errors that are robust to errors-in-variables as well as to
heteroskedasticity and autocorrelation by Newey and West (1987) with a
Bartlett kernel and data-driven lag selection based on Andrews (1991).

Model λfinal λfirst λrev,k R2(%) MAPE(%)

Standard CCAPM 0.17 8.63 2.05

(1.05)

First CCAPM 0.27 18.50 1.92

(No revisions) (1.54)

|Standard CCAPM| 0.31 -1.15 30.06 1.70

(k = 1) (1.77) (-1.89)

|Standard CCAPM| 0.30 -0.94 25.95 1.75

(k = 2) (1.73) (-1.83)

|Standard CCAPM| 0.28 -0.67 34.08 1.68

(k = 4) (1.64) (-1.69)

|Standard CCAPM| 0.36 0.71 30.47 1.60

(k = 12) (1.95) (2.10)

|Standard CCAPM| -0.05 0.61 35.48 1.45

(k = T) (-0.39) (2.62)
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Table 9: Revision uncertainty as risk or ambiguity?
This table reports estimated coefficients, t-statistics (in parenthesis), R2

and time period of various permutations of risk and uncertainty proxies,
RISK t+1 = (σ̂GARCH

t+1 ,RVt+1, σ̂MS
t+1)′ and AMBt+1 = (SPFt+1, IVt+1)′, respectively,

in the regressions |νt+1|t+1+k| = θRISK t+1 +ψAMBt+1 +ut+1, k = 1. Details of
the construction of RISK t+1 and AMBt+1 can be found in Section E.2. GARCH
indicates conditonal volatility estimated by a GARCH(1,1), σ̂GARCH

t+1 , RV indi-
cates realized volatility of consumption growth estimated as the sum of squared
intraquarter monthly first release consumption growth rates, RVt+1, and MS
indicates the markov-switching conditional volatility from Boguth and Kuehn
(2013), σ̂MS

t+1. SPF indicates the cross-sectional variance at each time point
across all professional forecasters’ nowcast on current consumption growth and
VXO indicates the implied volatility, VXO Index. All variables are standard-
ized. The t-statistics are constructed with HAC standard errors that are robust
to heteroskedasticity and autocorrelation by Newey and West (1987) with a
Bartlett kernel and data-driven lag selection based on Andrews (1991).

Risk proxy Ambiguity proxy

GARCH. RV MS SPF VXO R2(%) Time period

-0.09 0.35 11.47 1982-2015

(-1.21) (5.86)

0.09 0.33 11.53 1982-2015

(0.91) (5.52)

-0.07 0.35 11.47 1982-2009

(-0.75) (5.05)

-0.17 0.33 10.25 1986-2015

(-2.11) (2.40)

0.02 0.28 7.78 1986-2015

(0.16) (1.96)

-0.18 0.36 12.19 1986-2009

(-1.17) (2.10)

-0.09 0.12 -0.08 0.34 12.97 1982-2009

(-0.94) (1.07) (-0.66) (4.89)

-0.15 0.05 -0.16 0.37 13.98 1986-2009

(-1.37) (0.51) (-0.99) (2.04)

-0.14 0.04 -0.14 0.26 0.29 19.93 1986-2009

(-1.53) (0.39) (-0.94) (3.32) (1.65)



Table 10:
Resampling from 202 portfolios: R2 summary
This table reports a summary of the adjusted cross-sectional
R2 using the Standard CCAPM, First CCAPM, Revised
CCAPM with k = 1 and benchmark models across subsam-
ples of the set of 202 test portfolios. We randomly sam-
ple 10,000 times (without replacement) 25 portfolios. The
left column reports average adjusted cross-sectional R2 and
the right column reports the share of samples where the
Revised CCAPM with k = 1 provides a strictly greater ad-
justed cross-sectional R2 than its benchmark models, i =
{Standard CCAPM, First CCAPM, Benchmarks}. Numbers
are in percentages.

Model Mean R2 R2(Revised CCAPM) > R2(i)

Standard CCAPM 7.78 91.86

First CCAPM 12.94 87.29

Revised CCAPM 28.23 -

Ult. CCAPM 28.64 48.51

Q4-Q4 CCAPM 7.28 85.18

Cay CCAPM 16.60 77.33
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Figure 1: Realized versus predicted returns
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This figure depicts realized average excess returns versus model predicted excess returns (annualized
percentage per quarter) for the 25 Fama-French size and book-to-market ratio sorted portfolios.
The estimated models are the Standard CCAPM using final data, the First CCAPM using first
release data only, the Revised CCAPM using first release data and a revision uncertainty component
(k = 1), and the three-factor Fama-French model. The first (second) number indicates the size
(book-to-market) quintile.
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Figure 2: Variance profile of consumption releases
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This figure depicts the standard deviation of consumption growth
data releases, ct|t+k for k = 0,1,2,4,12,T over the sample period
1965Q1:2015Q3. The values are annualized and reported in percent-
ages.
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Figure 3: Empirical placebo distributions

This figure shows empirical placebo distributions of the adjusted cross-sectional R2 (left panel)
and MAPE (right panel) for the Revised CCAPM with k = 1. The upper panel report results
from row resampling (with replacement), the middle panel from simulations used the best fitting
ARMA(p,q) representation of revisions obtained using the BIC criteria, and the lower panel using
simulations from a normal distribution. In the two latter cases the variance is matching the
sample variance of the revisions series. The black dashed line indicate adjusted cross-sectional
R2 (left panel) and MAPE (right panel) using the First CCAPM. The blue dashed line indicate the
adjusted cross-sectional R2 (left panel) and MAPE (right panel) using the Revised CCAPM with
k = 1. We conduct 10,000 placebo replications.
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Figure 4: Absolute revisions versus SPF dispersion

This figure depicts the time series of absolute revisions, k = 1, (orange solid
line) together with our ambiguity proxy obtained as the cross-sectional vari-
ance of SPF nowcasts of consumption growth (blue dashed line). Values are
standardized. Gray shaded areas indicate NBER recessions.
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Figure 5: Resampling from 202 portfolios: SDF loading summary

This figure depicts histograms of SDF loadings (λs) (upper panel) and associated t-statistics
(lower panel) using the Revised CCAPM with k = 1 across subsamples of the set of 202 rest
portfolios. We randomly sample 10,000 times (without replacement) 25 portfolios and in each
sample we estimate the Revised CCAPM with k = 1 following Section A. The dotted blue line
indicates zero in the upper panel and the black dotted line indicates the 5% critical value in a
two-sided statistical significance test of the SDF loading in the lower panel.

59



Supplementary Appendix for

Asset pricing with data revisions

(not intended for publication)
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A. Data sources and summary statistics

This section outlines the data sources and transformation used in the paper.

A.1. Consumption data

We obtain quarterly data on personal consumption expenditure for nondurable goods

and its subsequent releases from the Archival Federal Reserve Economic Database

(ALFRED) at the Federal Reserve Bank of St. Louis. This data set contains first

releases as well as all subsequent releases. The data spans from 1965:Q1 to 2018:Q2

and is transformed to continuously compounded growth rates. Since we will consider

a revision horizon up to k = 12 this limits the end of the sample to 2015:Q2, using

that k = T simply uses all available revisions up until the end of the original sample.

The first advance estimate of nondurables consumption expenditure related to the

previous quarter is released at the end of the first month of each quarter. Subsequent

revisions are released at the end of the second and third month of each quarter.

Given these multiple releases within the same quarter, we pick the first release

as the relevant release series, in line with Aruoba (2008). We do not adjust for

population growth since it is substantially revised but only available in vintage data

form from 1999 and onwards, hence avoiding contaminating results by using final

revised population growth data. Nominal excess returns are deflated using the final

Personal Consumption Expenditures implicit price deflator obtained from the U.S.

Bureau of Economic Analysis on nondurables consumption.

A.2. Predictors

Our set of predictors is inspired by the literature on consumption forecasting. Stock

prices are quarterly averages based on the Standard and Poor’s 500 Index. The

interest rate is the quarterly average based on the three-month Treasury bill rate,

reported monthly by the Board of Governors of the Federal Reserve System. Both

variables are obtained from CRSP. Labor income is obtained from the Bureau of

Economic Analysis and defined as wages and salaries plus transfers minus personal

contributions for social insurance, as it appears in the quarterly components from

the Department of Commerce’s National Income and Product Accounts. Since it is

not possible to obtain first release series for the labor income, we use final release

data. All three variables are log differenced. We also include the quarterly average
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of the overall index and expectations index of Consumer sentiment from the Survey

Research Center of the University of Michigan. We construct the first release inflation

and industrial production growth predictors using the continuously compounded

growth series for the Consumer Price Index and Industrial Production Index from

the Archival Federal Reserve Economic Database (ALFRED) at the Federal Reserve

Bank of St. Louis. The Economic Policy Uncertainty index is the quarterly average

of the monthly overall EPU index developed by Baker et al. (2016) and obtained

from https://www.policyuncertainty.com/). For data prior to 1985 we use the

News-Based Historical Economic Policy Uncertainty and standardize the data such

that the average difference between the two series is minimized in the period in which

both series overlap. We obtain the dividend-yield ratio and default yield from the

website of Amil Goyal (http://www.hec.unil.ch/agoyal/). The former is defined

as the difference between the log of dividends and the log of lagged prices and the

latter as the difference between the return on BAA and AAA corporate bonds. All

predictors span the period from 1965:Q1 to 2018:Q2.

A.3. Risk and ambiguity proxies

We use three proxies for risk. The first is the conditional volatility as estimated

by a markov-switching model in Boguth and Kuehn (2013) using a Markov model.

The data which spans 1965:Q1 to 2009:Q4, is obtained from Oliver Boguth’s website

(http://www.public.asu.edu/~oboguth/research.html). The second risk proxy is

the conditional variance estimate of a GARCH(1,1) model on consumption growth

rates during our complete sample period 1965:Q1 to 2018:Q4. Table A.1 reports the

parameter estimates and log likelihood value. The third risk proxy is the realized

volatility, which we construct as the sum of the squared intraquarter monthly logarith-

mic growth rates of real nondurable consumption growth. We obtain monthly vintage

data similarly to the baseline quarterly data set from ALFRED. We construct two

ambiguity proxies. The first proxy is the cross-sectional forecast dispersion between

individual forecasters for total consumption growth from the Survey of Profesional

Forecasters. We measure dispersion using the cross sectional variance estimate at

each point in time. We also use the difference between the 75th percentile and the

25th percentile. Our SPF data for total consumption covers the period from 1982:Q1

to 2018:Q2. Our second measure of ambiguity is the quarterly average of the Chicago

Board Options Exchange S&P 100 Volatility Index (VXO). The data, which spans from
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1986:Q2 to 2018:Q2 is obtained from the Chicago Board Options Exchange (CBOE).

Table A.1: GARCH(1,1) estimates
This table reports the parameters from esti-
mation of the GARCH(1,1) model on ct+1|t+1
specified as σ2

t+1 =ω+βσ2
t +αε2

t , where εt is the
innovation from the conditional mean equation,
assuming iid εt ∼ N(0,1). We report t-statistics
in parenthesis.

ω β α Log likelihood

0.62 0.91 0.04 -565.71

(0.41) (6.35) (0.68)
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B. Revision predictability

Our set of exogenous predictors is derived from the literature on consumption fore-

casting and our data sources and construction of predictors are described in the

former section of this Appendix. The baseline macro-financial variables typically

included in the existing literature are the return to the S&P 500 Index, the three-

month Treasury Bill rate and labor income growth, see Carroll, Fuhrer, and Wilcox

(1994) and Ludvigson (2004). We also include measures of consumer confidence, see

Lahiri, Monokroussos, and Zhao (2016), obtained form the Survey of Consumers

administrated by the Survey Research Center of the University of Michigan. They

publish an overall Index of Consumer sentiment, which can be decomposed into a

present conditions index and an expectations index. Following Lahiri et al. (2016), we

use both the overall index and the expectations index. We also form a first release

inflation predictor, see e.g. Boons and Prado (2019), as well as a first release industrial

production growth predictor. We also include a measure of economic policy uncertainty

(Baker et al., 2016) as well as the dividend-yield ratio (Goyal and Welch, 2008). All

predictors are available over the 1965-2018 period.

In Tables A.2-A.6 we report predictability results using this broad set of predictors

and the model in (14) of the paper.
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Table A.2: Revision predictability (k = 1)
This table provides in-sample and out-of-sample results for predictive
regressions of revisions at a horizon of one period ahead, k = 1. The panel
on the left shows the slope coefficients, Wald test for joint significance
and R2 of a regression of the revision component on the first release and
an exogenous predictor, νt|t+1 = a+ b̃ct|t +dxt +εt, over the over the 1965-
2018 period. The panel on the right shows the out-of-sample results for
the same regression. Specifically, it shows the out-of-sample R2, R2

OoS =
1−∑T

t=1
(
vt|t+1 −�vt|t+1)2)

/
∑T

t=1
(
vt|t+1

)2 and corresponding p-value using a
Diebold-Mariano test. We use an expanding window scheme with an initial
window of 15 years (60 time periods), and generate the first forecasts for
1980Q1.

In-sample Out-of-sample

Variable Wald p-value R2(%) R2
OoS(%) DM p-value

Economic policy uncertainty 0.494 0.42 -5.11 0.744

Inflation 0.443 0.42 -1.98 0.703

Labor income 0.434 1.56 -6.99 0.775

Industrial production 0.292 1.28 -0.28 0.536

Michigan Index (overall) 0.071 2.38 1.11 0.359

Michigan Index (expectations) 0.148 1.61 0.35 0.451

SP500 Index returns 0.488 0.44 -2.75 0.841

T-bill rate 0.475 0.40 -4.05 0.826

Dividend yield 0.210 0.66 -4.50 0.846

ct|t 0.389 0.35 -1.07 0.644
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Table A.3: Revision predictability (k = 2)
This table provides in-sample and out-of-sample results for predictive
regressions of revisions at a horizon of one period ahead, k = 2. The panel
on the left shows the slope coefficients, Wald test for joint significance
and R2 of a regression of the revision component on the first release and
an exogenous predictor, νt|t+2 = a+ b̃ct|t +dxt +εt, over the over the 1965-
2018 period. The panel on the right shows the out-of-sample results for
the same regression. Specifically, it shows the out-of-sample R2, R2

OoS =
1−∑T

t=1
(
νt|t+2 −�νt|t+2)2)

/
∑T

t=1
(
νt|t+2

)2 and corresponding p-value using a
Diebold-Mariano test. We use an expanding window scheme with an initial
window of 15 years (60 time periods), and generate the first forecasts for
1980Q1.

In-sample Out-of-sample

Variable Wald p-value R2(%) R2
OoS(%) DM p-value

Economic policy uncertainty 0.139 3.07 -0.78 0.546

Inflation 0.057 3.22 3.32 0.096

Labor income 0.002 6.81 2.26 0.369

Industrial production 0.109 3.26 3.07 0.071

Michigan Index (overall) 0.019 4.52 4.27 0.043

Michigan Index (expectations) 0.022 4.34 4.65 0.014

SP500 Index returns 0.093 2.96 1.67 0.264

T-bill rate 0.060 3.30 0.71 0.425

Dividend yield 0.059 3.29 1.09 0.393

ct|t 0.069 2.92 3.63 0.034
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Table A.4: Revision predictability (k = 4)
This table provides in-sample and out-of-sample results for predictive
regressions of revisions at a horizon of one period ahead, k = 4. The panel
on the left shows the slope coefficients, Wald test for joint significance
and R2 of a regression of the revision component on the first release and
an exogenous predictor, νt|t+4 = a+ b̃ct|t +dxt +εt, over the over the 1965-
2018 period. The panel on the right shows the out-of-sample results for
the same regression. Specifically, it shows the out-of-sample R2, R2

OoS =
1−∑T

t=1
(
νt|t+4 −�νt|t+4)2)

/
∑T

t=1
(
νt|t+4

)2 and corresponding p-value using a
Diebold-Mariano test. We use an expanding window scheme with an initial
window of 15 years (60 time periods), and generate the first forecasts for
1980Q1.

In-sample Out-of-sample

Variable Wald p-value R2(%) R2
OoS(%) DM p-value

Economic policy uncertainty 0.002 7.99 6.31 0.262

Inflation 0.000 9.00 13.04 0.013

Labor income 0.000 9.71 6.64 0.151

Industrial production 0.000 8.78 12.45 0.004

Michigan Index (overall) 0.000 11.19 15.01 0.004

Michigan Index (expectations) 0.000 10.63 14.88 0.003

SP500 Index returns 0.000 8.75 12.49 0.012

T-bill rate 0.000 8.48 9.80 0.056

Dividend yield 0.000 9.35 10.89 0.059

ct|t 0.000 7.98 12.18 0.010
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Table A.5: Revision predictability (k = 12)
This table provides in-sample and out-of-sample results for predictive
regressions of revisions at a horizon of one period ahead, k = 12. The panel
on the left shows the slope coefficients, Wald test for joint significance and
R2 of a regression of the revision component on the first release and an
exogenous predictor, νt|t+12 = a+ b̃ct|t + dxt + εt, over the over the 1965-
2018 period. The panel on the right shows the out-of-sample results for
the same regression. Specifically, it shows the out-of-sample R2, R2

OoS =
1−∑T

t=1
(
νt|t+12 −àνt|t+12)2)

/
∑T

t=1
(
νt|t+12

)2 and corresponding p-value using
a Diebold-Mariano test. We use an expanding window scheme with an
initial window of 15 years (60 time periods), and generate the first forecasts
for 1980Q1.

In-sample Out-of-sample

Variable Wald p-value R2(%) R2
OoS(%) DM p-value

Economic policy uncertainty 0.000 29.07 27.42 0.029

Inflation 0.000 27.71 31.60 0.064

Labor income 0.000 31.14 32.06 0.070

Industrial production 0.000 29.45 34.36 0.045

Michigan Index (overall) 0.000 34.11 38.91 0.040

Michigan Index (expectations) 0.000 33.23 38.62 0.037

SP500 Index returns 0.000 29.23 33.75 0.037

T-bill rate 0.000 27.61 28.54 0.090

Dividend yield 0.000 27.66 28.72 0.075

ct|t 0.000 27.61 32.75 0.049
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Table A.6: Revision predictability (k = T)
This table provides in-sample and out-of-sample results for predictive
regressions of revisions at a horizon of one period ahead, k = T. The panel
on the left shows the slope coefficients, Wald test for joint significance and
R2 of a regression of the revision component on the first release and an
exogenous predictor, νt|T = a+ b̃ct|t +dxt +εt, over the over the 1965-2018
period. The panel on the right shows the out-of-sample results for the
same regression. Specifically, it shows the out-of-sample R2, R2

OoS = 1−∑T
t=1

(
νt|T − ν̂t|T )2)

/
∑T

t=1
(
νt|T

)2 and corresponding p-value using a Diebold-
Mariano test. We use an expanding window scheme with an initial window
of 15 years (60 time periods), and generate the first forecasts for 1980Q1.

In-sample Out-of-sample

Variable Wald p-value R2(%) R2
OoS(%) DM p-value

Economic policy uncertainty 0.000 34.56 - -

Inflation 0.000 32.89 - -

Labor income 0.000 40.59 - -

Industrial production 0.000 33.95 - -

Michigan Index (overall) 0.000 41.03 - -

Michigan Index (expectations) 0.000 40.27 - -

SP500 Index returns 0.000 34.43 - -

T-bill rate 0.000 32.52 - -

Dividend yield 0.000 32.57 - -

ct|t 0.000 32.51 - -
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C. Factor exposures and average excess returns

This section shows the relationship between the realized average excess returns and

the factor exposure to first release consumption growth and the revision uncertainty

component.

Figure A.1: Realized average excess returns versus factor exposures
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This figure depicts realized average excess returns (annualized percentage per quarter) versus factor
exposures for the 25 Fama-French size and book-to-market ratio sorted portfolios. The estimated
model are the Revised CCAPM using first release data and a revisions uncertainty component (k = 1).
The first (second) number indicates the size (book-to-market) quintile. The solid orange line indicates
the best linear relationship between realized average excess returns and factor exposures.
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D. Implication of state reference point

Define the reference point dependent revision uncertainty term by

ϕ̃k
t+1 = (ct+1|t+1 − c̃t+1) · |νt+1|t+1+k|,

where c̃t+1 is the reference point. If c̃t+1 = 0 we obtain the model used in our baseline

results presented in the paper and ϕ̃k
t+1 =ϕk

t+1. We consider a large set of either fixed

or time-varying values of the reference point. In the former cases, we consider a

dicretization of the values lying between the 5’th and 95’th percentile first release

consumption growth rates, encompassing zero and the unconditional mean. Arguably,

values close to zero or slighly positive are the most likely candidates for a plausible

reference point. We show, however, the full results for transparency. In the time-

varying reference point cases, we consider equal-weighted and exponential-weighted

moving averages over a window of 1,3,5, and 10 years in the past. We also adapt the

certainty equivalent consumption growth as per Delikouras and Kostakis (2019) to

using first releases, which is defined as

c̃CE
t+1 =µc(1−φc)+φcct|t +d2

√
1−φ2

cσc, (D.1)

where µc, σc, and φc are the unconditional mean, standard deviation and first-order

autocorrelation, respectively. The parameter d2 is a solution to a fixed-point problem

and we use the value of -0.770 reported in Table A6 in the Online Appendix of

Delikouras and Kostakis (2019), which is estimated on quarterly data and the 25

size and book-to-market portfolios as test assets. We obtain estimates for µc, σc, and

φc from Table 1 in the main paper. Lastly, we consider the cyclical component of

consumption growth obtained by the linear projection method of Hamilton (2018). This

component was recently applied in the context of personal consumption expenditure

by Atanasov et al. (2019), finding clear state-dependencies in expected returns as a

function of whether consumption resides above or below its cyclical component. We

follow their approach. Specifically, we regress the first release in logarithmic levels

on a constant and four lags. We choose these lags following the recommendations

of Hamilton (2018), according to a two-year cycle horizon. The regression error is

the measure of cyclical consumption. We then compute logarithmic growth rates

of this cyclical component over the cycle horizon and use it as a measure of time-

12



varying reference point. Indeed, this can under suitable assumptions be seen as an

approximation to the surplus consumption in the external habit formation model of

Campbell and Cochrane (1999) as shown by Atanasov et al. (2019).

We report the results for a fixed reference point in Figure A.2 with a discretization

of the range of fixed state reference points by values of 0.01%. It is evident that in

all specifications of plausible fixed reference points the pricing ability of the Revised

CCAPM is high and sometimes even higher than our baseline results reported in

the paper. In fact, it reveals that our natural and implicit choice of c̃t+1 = 0 in

the base line results presented above is conservative relative to the best achievable

values. As the reference point becomes increasingly unlikely, performance deteriorates

unsurprisingly. Interestingly, the figure reveals an asymmetric shape in the fixed

reference point. A similar conclusion is obtained from the time varying reference

point cases. In all specifications considered, the SDF loading on both the first release

and revision uncertainty component maintain their signs from the baseline results

and remain statistically significant on conventional significance levels, most on the

1% level. The pricing performance metrics R2 and MAPE remain high and low,

respectively, and show little sensitivity to the alteration of the method of constructing

a time-varying reference point. Taken together, these results suggest no concern that

our interpretation of the pricing of the revision uncertainty component in the Revised

CCAPM is sensitive to the implicit choice of reference point.
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Figure A.2: Fixed state reference point and adjusted R2
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This figure depicts the adjusted cross-sectional R2 from the Revised
CCAPM using values between the 5’th and 95’th percentile first release
consumption growth rates as fixed reference point, c̃, in the revisions
uncertainty component. The zero reference point is highlighted with a
blue circle and the unconditional mean with a black circle.
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Table A.7: Implication of time varying state reference point
This table reports the t-statistics associated with the SDF loadings (λs),
adjusted cross-sectional R2 and mean absolute pricing error MAPE for the
Revised CCAPM using various specifications of a time-varying reference
point, c̃t+1, in the revisions uncertainty component. Panel A considers
the certainty equivalent return from Delikouras and Kostakis (2019) and
cyclical consumption growth computed as the logarithmic cyclical growth
rates of cyclical consumption as in Atanasov et al. (2019). Panel B (C)
uses equal-weighted (exponentially-weighted) moving averages over past
horizons of 1 to 10 years. The test assets are the 25 size and book-to-
market ratio sorted portfolios. Standard errors of the SDF loadings are
reported in parenthesis below each estimate, using GMM standard errors
that are robust to errors-in-variables as well as to heteroskedasticity and
autocorrelation by Newey and West (1987) with a Bartlett kernel and
data-driven lag selection based on Andrews (1991).

Time varying reference point λfirst λrev,1 R2(%) MAPE(%)

Panel A: Certainty equivalent and cyclical component

Certainty equivalent 2.86 -2.58 70.66 1.15

Cyclical component 2.76 -2.48 51.30 1.39

Panel B: Equal-weighted moving average

1 year 2.37 -2.33 69.21 1.06

3 years 1.90 -3.08 73.73 0.97

5 years 2.49 -3.13 68.36 1.09

10 years 2.49 -3.59 62.64 1.14

Panel C: Exponentially-weighted moving average

1 year 2.32 -2.16 63.16 1.16

3 years 2.31 -2.69 74.94 0.98

5 years 2.41 -2.94 73.62 0.98

10 years 2.58 -3.17 67.60 1.10
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E. Proof of theoretical result

Proof of Proposition 1: Recall the beta representation

E[r i,t+1]=βc
iγ

c, (E.2)

where βc
i = cov[r i,t+1, ct+1]/var[ct+1] and γc ≥ 0 is the market price of immediate

consumption growth risk. Replacing (the generic) ct+1 by the data sample ct+1|t+1+k

implies together with the decomposition in (8) of the paper that

βfinal
i = cov

[
r i,t+1, ct+1|t+1+k

]
var

[
ct+1|t+1+k

]
= cov

[
r i,t+1, ct+1|t+1 +νt+1|t+1+k

]
var

[
ct+1|t+1+k

]
= cov

[
r i,t+1, ct+1|t+1

]+cov
[
r i,t+1,νt+1|t+1+k

]
var

[
ct+1|t+1+k

]
= var

[
ct+1|t+1

]
var

[
ct+1|t+1

] cov
[
r i,t+1, ct+1|t+1

]
var

[
ct+1|t+1+k

] + var
[
νt+1|t+1+k

]
var

[
νt+1|t+1+k

] cov
[
r i,t+1,νt+1|t+1+k

]
var

[
ct+1|t+1+k

]
= ηfirstβfirst +ηrev,kβrev,k, (E.3)

where

ηfirst = var
[
ct+1|t+1

]
var

[
ct+1|t+1+k

] and ηrev,k = var
[
νt+1|t+1+k

]
var

[
ct+1|t+1+k

] , (E.4)

and

βfirst = cov
[
r i,t+1, ct+1|t+1

]
var

[
ct+1|t+1

] and βrev,k = cov
[
r i,t+1,νt+1|t+1+k

]
var

[
νt+1|t+1+k

] . (E.5)

Note that the implied betas from these derivations are univariate betas, obtainable

from a single time series regression of returns, r i,t+1, onto each factor separately

(including a constant). The result in the Proposition now follows by combining (E.2)

and (E.3) and defining

γfirst = γcηfirst and γrev,k = γcηrev,k. (E.6)
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